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I. INTRODUCTION

In this report, we summarize the findings from a study on a number of

fundamental problems in solar-terrestrial relationships supported by a three

year grant from the Air Force Office of scientific Research (ASOSR-88-0013) in

the time period November 1, 1987 - March 31, 1991. The specific emphasis of

this study is to deal with those problems concerning the dynamics of

photospheric/corona/interplanetary coupling mechanisms (PCIM).

It is understood that solar-terrestiral research has its ultimate goal in

the development of the scientific capability of objective prediction of tghe

earth's space environment. To attain this goal, it is necessary to acquire

sufficient understanding about the physical processes in the photosphere,

corona, and interplanetary space and to develop effective skills with

numerical simulation of the dynamics in these processes.

In order to achieve these goals, we have taken a two-fold approach; we

first identified a possible physical mechanism and performed a synthesis

calculation using self-consistent magnetohydrodynamic (MHD) theory via

numerical simulation as well as analytical methods. These results were then

tested by available observations. If no observations were available, the

results were used as a guide for future planned observations. The physical

scenario for the present study can be described as follows:

First, we investigated solar surface activities. This was accomplished

by using our newly developed nonlinear force-free (NLFF) model (Wu, et al.,

1990, see Section VI.3) together with solar magnetograph data which were

obtained by the Solar Optical Observational Network (SOON) system of the Air

Force and NASA/Marshall Space Flight Center. Representative results are shown

in the upper left panel of Figure 1 in which (a) shows the observed vector

magnetic field at photospheric level and (b) shows the computed field lines of

the observed structures extrapolating from data given in (a). In the lower
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left panel of Figure 1 we present the results on the study shear-motion-

induced non-equilibrium which may lead to the initiation of Coronal Mass

Ejections (CMEs). In this study, we found that when the shear angle reaches a

critical value, the arcade will become unstable and will be ejected to the

middle atmosphere (i.e. the corona). This critical value of shear could be

tested by observation. A detailed account of these findings is described in

Section IV.I.

Next, we investigated the coronal responses due to the mass ejection.

This result is shown in the upper right panel of Figure 1 where (a) shows the

input to simulate the mass ejection by prescribing a mass flux flowing from

the lower boundary, (b) shows the initial magnetic field configuration and the

location of the input and (c) shows the results 5500 sec after introduction of

the disturbance, which exhibits the non-linear interaction between mass motion

and MHD waves. It clearly indicates that the outward propagation of MHD fast

waves (or shocks) and MHD slow shocks in the inner region shown as the twin

peaks in the upper right panel of Figure 1.

Finally, we studied the interplanetary responses as shown in the lower

right panel of Figure 1. This panel (a) shows a radio astronomical

interplanetary scintillation (IPS) observation of the disturbed solar wind

density during an earlier period in September 1980 near solar maximum (cycle

21); (b) shows a three-dimensional MHD simulation of density compression

regions (red) and rarefaction (blue). The resemblence between the observation

and simulation is cleatqy indicated, (c) shows the solar wind density response

in the ecliptic plane during a series of major solar flares and CMEs at solar

minimum in February 1986; spacecraft data at the designated location (Earth,

Giotto and Sakigake) were used for comparison with the MHD similuation. To

facilitate these studies, a number of new numerical techniques were developed.
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These findings are included in section VI. The subject of fundamental

physical mechanisms of solar activities is presented in Section II. The

results of solar atmospheric magnetohydrodynamic waves are presEated in

Section III. In Section IV we discuss the solar-interplanetary coupling

studies. The numeribal modeling of global solar interplanetary environment is

included in Section V. Finally, the concluding remarks are presented in

Section VII. In summary, a total of sixteen articles were published in

Astrophysical Journal, Jouranl of Geophysical Resarch, Solar Physics, etc. to

present our results in the public literature.

II. INVESTIGATION OF FUNDAMENTAL PHYSICAL MECHANISMS OF SOLAR ACTIVITIES

In this section, we employed both macroscopic theory of

magnetohydrodynamics and microscopic kinetic theory (i.e. Boltzmann equations)

to study the physical mechanims which may explain the cause of solar

activities. Four papers were included to report these results.

MHD Simulation of Mass Injection: A Mechanism for the

formation of Active Region Loops, in J. Adv. Space Res.

Vol. 8, No. 11, 215-219, 1988.

A Dynamical Model of Prominence Loops. T. Yeh, in Solar
Phvs. , Vol. 124, 251-269, 1989.

Soliton and Strong Langmuir Turbulence in Solar Flares

Process in Astrophsvs. and Space Sci., Vol. 152, 287-

311. 1989.

The Role of Condensation and Heat Conduction in the
Formation of Prominences: A MHD Simulation, in Solar
Phvs., Vol. 125, 277-293, 1990.
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MHD SIMULATION OF MASS INJECTION: A
MECHANISM FOR THE FORMATION OF
ACTIVE REGION LOOPS

Chung-Chieh Cheng* and S. T. Wu**

*Naval Research Laboratory, Washington, DC 20375. U.S.A.
*Universit of Alabama in Huntsville. Huntsville, AL 35899, U.S.A.

ABSTRACT

We have used a 2-D nonlinear MHD numerical code to simulate the formation and dynamic

evolution of active regions loops subjected to mass injections at the footpoints. We also

calculated the UV and X-ray signatures of the plasmas. We find that it is possible to form

loops in a low beta plasma that occur in the solar active reions.

INTRODUCTION

Observations in XUV and in X-ray from Skylab have shown that the solar active region is

composed primarily of loop structures of various temperatures and sizes (cf. Vaiana et al.

Ill. Tousey e.l. /2/, Reeves eta.l. 131). Although there are numerous theoretical studies

of the heating of coronal loops (for a review see Kuperus, Ionson, and Spicer 141). the

problem of the formation of loops is largely not understood. In this paper, we have

numerically simulated, using a 2-D MHD code, the formation of coronal loop structures in

active regions under the assumption of mass injections from the loop footpoints. We have

also applied a spectroscopic code to the numerical results to obtain the XUV and X-ray

signatures of the evolution of the dynamics of the mass injection. We find that it is

possible to form loop structures in active regions from the mass injections if the magnetic

field is strong enough (i.e, low plasma beta). In contrast, Wu et al. /5/ and An etal. /6/

have found that mass injection will result in the formation or, a quiescent prominence in a

Kippenhahn-Schluter configuration if the plasma beta is high (e.g. betaw2).

NUMERICAL MODEL

The numerical simulation is done with a 2-D, non-planar. time dependent non-ideal MHD code.

The governing MHD equations are given by Wu et al. /7/, except now thermal conduction and

radiative losses are included in the energy equation. The numerical algorithm is based on
the method of the fully implicit continuous Eulerian scheme (Hu and Wu /8/; Wu and Wang
/91). The computation domain is 8000 km in height and 16000 km in width. Mass injection is

treated as an initial boundary value problem, and the characteristic method (Hu and Wu, /8/)

is used to specify some of the boundary conditions. The upper boundary is treated as a non-

rcflective su'rface.

For the present simulation, mass is injected at the lower boundary of a gravitationally

stratified plasma permeated with an initially dipole magnetic field (Fig. 1). The
atmosphere is asumed to be ,initially hydrostatic and isothermal with a temperature of 106 K
and a number density of 5x_0

9 cmn
3 at the lower boundary. The mass is injected with a

density and temperature a the lower boundary. Choice of the initial atmosphere corresponds

to the conditions of solar active regions.

RESULTS

."D Evolution of the Plasma

Figure 2 shows the dynamic evolution of the magnetic field, the temperature and the density

for the symmetric case for which the mass injection velocity is 40 kmisec and the initial

plasma beta is 0.5. We see that after 800 sec. the regions on the side of the injection

locations became more dense and cooler than the initial atmosphere. At 1600 sec. the

temperature in the condensed regions has decreased about 10? and the density increased about

30Z as compared with the surroundings. At t-3146 sec. the temperAture there has decreased
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Fig. I Initial model. The atmosphere is initially isothermal and
hydrostatic with a temperature of 106 K and a number density of
5 x 109 cm"3 at the lower boundary. The arrows indicate the

locations of mass injection.
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Fig. 2 Time evolution of the plasma for the symmetric mass
injection case with injection velocity of 40 km/sec. Initial
plasma beta is 0.5

to less than 7x10 5 K, and the density increased to more than 1010 cm-3 . As we can see from
the figure, as mass injection proceeds the adjacent magnetic field is squeezed which
compresses the plasma there and causes condensation. Note that the magnetic field is strong
enough to support the plasmas. and no pit is formed as in the case of high beta cases
studied by Wu et al. 151, and An _jIj. /61.

juV and X-Ray Soectroscooic Signatures

Once we know the evolution of the temperature and density of the plasmas, we can calculate
the XUV and X-ray radiation signatures. We have calculated the emission distribution
(photonslcm

3 
Tsec) for'the lines : N V 1238 AX (l.6x05 K), Ne VII 465 1 (5x105 K), Mg VIII

437 A (exl05 K), Mg IX 368 A (lXl0 6 K), and 0 VII 22 A (2x106 K). The temperatures
indicated for each line is the temperature at which the emission for that line is at
maximum. These lines are typical of the solar transition region and corona. The results
show that the N V emissions are concentrated in bright kernels at the location of mass
injections, while the Ne VII line shows extensions toward higher altitudes, and the coronal
0 VII line shows loop-like structures. Figures 3 and 4 show the emission distributions at
various times for selected lines.

The results for the case with higher mass injection velocity of 60 kn/sec and plasma
betam0.5 are similar to the above case, except now the evolution progresses faster, and the
formation of the loop-like structures occurs much earlier. At t-1600 sec, loop-like
structures can be observed in the coronal line 0 VII.

9
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MG VIII MG IX

1600 SEC::

Fig. 3 Emission distribution of the Hg VIII and Hg IX lines at
various times for the symmetric mass injection case.

NE VII 0 VII

800 SEC:

1600SEj__

3146 SEC:-

Fig. 4 I:miesson distribution of the Ne VII and 0 VII lines at
various times for the symmuetric mas, injection case.

Figures 5 and 6 show the results for an asynuetric mass injection with velocity of 100
lcm/sec in an initial atmosphere with beta-l.0. Again, the dynamic evolution is similar to
the symmetric injection case. However, in contrast to the syimmetric cases. the loop
structure seen in 0 VII has asymmetric emission distribution with one Side of the loop much
brighter than the other.

JASS I..OI
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Fig. 5 Time evolution of the plasma for the asymmetric mass
injection case with an injection velocity of 100 kmlsec. Initial

plasma beta is 0.5

NE VII Ma VIII 0 VII

800 SEC:

4. 4

S........................

1600SE:

* "__ __"__ __--__ _

S. :

1876 SEc:,

Fig. 6 Emission distribution for the Ne VII, Mg VIII. and 0 VII
lines at various times for the asymmetric mass injection case.

DISCUSSION

We have numerically simulated the dynamic evolution of mass injections in a solar atmosphere
and calculated the XUV and X-ray signatures. We find that for an atmosphere with small
plasma beta, mass injection produces condensations and provides the mass of loop-like
structures. The dense and cooler regions will be observed in the transition regions lines
such as Ne VII as elongated emission structures reminiscent of the the incomplete loops so
often observes from Skl, In the hotter coronal lines such as 0 VII we will oberve loop-
like structures similar to those observed in X-ray images from Skylab. We note that the
mass injection velocities we used in this paper are somewhat high compared to those
generally observed in the active region, although the mass injection could correspond to
spicule-like events that occur in the active regions. Our primary purpose here is to try to
understand the physics involved in the interaction between the mass injection and the
confining magnetic field. We have seen that mass injection into the magnetic configuration
from the footpoint could produce loop-like structures provided that the magnetic field is

1[1
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strong enough to support the injected material. Thus mass injection could be a mechanism of
loop formation in the active regions. In future simulations, more realistic mass injection
velocities of a few kilometers per sec will be used. These low evaporation velocities could
be produced by heating at lower levels at the footpoints.

The work done by S.T. Wu was supported by NASA under grant NAGW-9 and by Air Force under
grant AFOSR-88-00013.
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A DYNAMICAL MODEL OF PROMINENCE LOOPS

TYAN YEH

Space Environment Laboratory, NOAA Environmental Research Laboratories. Boulder. CO 80303, U.S.A.

(Received 10 August. 1988; in revised form 26 June, 1989)

Abstract. A dynamical model of prominence loops is constructed on the basis of the theory of hydromagnetic
buoyancy force. A prominence loop is regarded as a flux rope immersed in the solar atmosphere above a
bipolar region of the photospheric magnetic field. The motion of a loop is partitioned into a translational
motion, which accounts for the displacement of the centroidal axis of the loop, and an expansional motion,
which accounts for the displacement of the periphery of the loop relative to the axis. The translational motion
is driven by the hydromagnetic buoyancy force exerted by the surrounding medium of the solar atmosphere
and the gravitational force exerted by the Sun. The expansional motion is driven by the pressare gradient
that sustains the pressure difference between internal and external gas pressures and the self-induced
Lorentz force that results from interactions among internal currents. The main constituent of the hydro-
magnetic buoyancy force on a prominence loop is the diamagnetic force exerted on the internal currents
by the external currents that sustain the pre-existing magnetic field. By spatial transformation between
magnetic and mechanical stresses, the diamagnetic force is manifested through a mechanical force acting
at various mass elements of the prominence. For a prominence loop in equilibrium, the gravitational force
is balanced by the hydromagnetic buoyancy force and the Lorentz force of helical magnetic field is balanced
by a gradient force of gas pressure.

1. Introduction

Solar prominences are cool, dense plasmas trapped in the hot, tenuous coronal
atmosphere near the solar surface (see Tandberg-Hanssen, 1974). They consist of a
system of bundles of magnetic flux and the material constricted therein. Long-lived
quiescent prominences are formed in the neighborhoods of weak bipolar regions of the
photospheric magnetic field, with orientation almost along the polarity neutral lines (see
McIntosh, 1979). Short-lived active prominences associated with stronger magnetic
fields and short-lived postflare loop prominences appear above active regions near
sunspots. The weight of the prominence material is apparently supported by forces that
result from interactions among currents. Much of the past theoretical work has been
aimed at revealing the magnetic configurations that provide the requisite uplifting
magnetic force (e.g., Kippenhahn and Schlilter, 1957; Anzer and Tandberg-Hanssen,
1970; Kuperus and Raadu, 1974; Low, 1981). These models of quiescent prominences
are based on mathematical solutions to the equations of magnetohydrostatic equili-
brium.

A quiescent prominence may lose its equilibrium when it is subject to disturbances.
A perturbed prominence may find a new equilibrium or may run away in an eruption
and eventually disintegrate. In the process of eruption, each prominence loop evolves
dynamically and maintains itself as a separate object from the ambient medium. So does
a loop in active prominences in the absence of the catastrophic occurrence of magnetic
reconnection. Therefore, it is desirable to construct dynamical models for prominence

Solar Physics 124: 251-269. 1989.
D 1989 Kluiver Academic Publishers. Printed in Belgium.
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loops and to treat their quiescent states as special situations when there are no
unbalanced forces (Sakurai, 1976; Pneuman, 1984). Such a theoretical approach is very
much like that for looplike coronal mass ejections (Yeh, 1982).

Based on the theory of hydromagnetic buoyancy force for flux ropes (Yeh, 1985), we
construct a new dynamical model of prominence loops. This model differs from
Pneuman's model in the inclusion of the accelerations of translational and expansional
motions for a prominence loop. Pneuman prescribes the translational motion kinemati-
cally, without specifying the force that overcomes the gravitational pull, and assumes
that the Lorentz force is balanced by the gradient force of gas pressure which matches
the external conditions. In the new model, we regard the flux rope that represents a
prominence loop as an extraneous body immersed in the magnetized medium of the
solar atmosphere. Other loops in the prominence system are regarded as being far away
and not causing significant interaction. Polarization currents are induced at the interface
to maintain the separation of the loop's helical magnetic field lines from the bipolar
magnetic field lines of the external medium. The ambient hydromagnetic pressure exerts
a hydromagnetic buoyancy force on the prominence loop. In turn, through the spatial
transmission of stress and the spatial transformation between magnetic and mechanical
stresses, the hydromagnetic buoyancy force is manifested as an externally-caused
gradient force of gas pressure in the prominence. The main constituent of the hydro-
magnetic buoyancy force is the diamagnetic force that amounts to the force exerted on
the currents in the prominence loop by the currents that sustain the bipolar magnetic
field.

Accordingly, the motion of an individual mass element of the prominence loop
consists of two parts: a translational motion shared by various mass elements and an
expansional motion relative to the centroidal axis of the loop. The translational motion
is driven by the hydromagnetic buoyancy force and the gravitational force. The
expansional motion is driven by the internally-caused gradient force that sustains the
pressure difference between internal and external gas pressures and the self-induced
Lorentz force that results from interactions among internal currents. In the special
situation of equilibrium, the gravitational force is balanced by the hydromagnetic
buoyancy force and the Lorentz force of helical magnetic field is balanced by the
internally-caused gradient force of gas pressure.

In this paper, we expound the new dynamical model of prominence loops with the
simplification that there is no variation along the axis of the prominence. The effect of
the curvature of the axis and the longitudinal stretching of the prominence in its motion
will be considered in future work. Thus, the present treatment may be regarded as
dealing with the top portion of a prominence loop, which is represented by a section
of a straight flux rope of circular cross-section. The cylindrical symmetry is merely a
mathematical convenience. The realistic geometry of arbitrary cross-sections that
appear in the temporal change of the shape of a flux rope will be considered in future
work. The prominence loop is immersed in an arcaded bipolar magnetic field near the
solar surface. For the sake of simplicity, the loop will be assumed to have its axis aligned
to the magnetic arcade.

14



A DYNAMICAL MODEL OF PROMINENCE LOOPS

2. Currents and Magnetic Fields

We use cylindrical coordinates (z, q, 0) with the z-axis aligned with the axis of the
prominence loop and the angle 0 measured from the radial line in the upward direction.
The cross-sectional radius of the loop will be denoted Q. The whole space is partitioned
into three regions: an interior region q < Q occupied by the loop, an exterior region
q > Q filled by the surrounding medium, and a peripheral region q = Q which is a thin
layer of negligible mass and concentrated current. The currents that flow in the exterior
region to sustain the bipolar magnetic field are the external currents. The internal
currents consist of the currents that are carried by the intruding prominence in the
interior region and the currents that are induced in the peripheral region. The immersion
of the prominence loop as an extraneous body in the magnetized medium of the solar
atmosphere causes the induction of polarization currents. The induced currents
maintain the magnetic separation of the internal and external field lines. By virtue of the
high electrical conductivity of the solar plasmas, the induced currents concentrate
spatially to form a surface current at the periphery.

By virtue of the interaction among the three current systems, there are several kinds
of field-line linkage. The field lines in the interior region are helical. The field lines in
the peripheral region are circumferential. Field lines in the exterior region are mainly
bipolar. The internal magnetic field is produced by the currents in the interior region
alone. This is so because the interior region is shielded from the effect of the external
currents by the polarization currents in the peripheral region. In other words, the
external currents and the polarization currents together produce a null magnetic field
in the interior region. On the other hand, the external magnetic field is produced jointly
by all currents in the exterior, peripheral, and interior regions. It is the sum of the
pre-existing magnetic field produced by the external currents and the perturbant
magnetic field; the latter is produced by the conduction currents carried by the intruding
loop and the polarization currents induced in the interaction.

First, we consider the pre-existing magnetic field produced by external currents. In
a two-dimensional treatment, the invariance in the longitudinal direction allows a
uniform longitudinal component in the magnetic field. The bipolar transverse com-
ponent of the magnetic field can be described in terms of a couple of line monopoles
as the source and sink of magnetic flux, in lieu of currents. This is merely a mathematical
expediency. The currents that produce the longitudinal magnetic field are very far away
so that the latter can be regarded uniform. Let the photospheric Lux source of monopole
strength T.Q be located at-q = a, t0 = r - o and the photospheric flux sink of monopole
strength - T. be located at q = a, 0 = 7r + a (see Figure 1). The distance a and the
half-angle 7 are related to the heliocentric distance ro of the loop's axis and the
heliocentric half-angle 0., subtended by the couple of monopoles by the geometric
relationships

a 2 =-R 2  Ror cosO .. +r sin a sin 0A,

Ro  a
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_a at

____t q sin -a sin(r ) (1

+ - Matnqsi a i( +)

27r q cos-a cos (r +o:)

Thus, the pre-existing magnetic field, given by LzB, + 1. x ( /,))can be written
as

2nr q 2 +2aq cos(0 + a) +a 2

7+ . q~ q+ a cos (0 - c~)]Ia sin(0 - %) (2)
27r q 2 + 2aq cos (0-cc) +a2

Here B ,-,denotes the uniform longitudinal magnetic field. The field lines are helical
arcs, with circuilar projections, from the flux source to the flux sink. A~t the site q =0,
whe-e the prominence loop intrudes, the pre-existing magnetic field has the local
strength

B~ I7B. , f.+ 1lr x LB...B (3)

with the transverse magnetic field given by

B.L . si oc(4)
KC a

16



A DYNAMICAL MODEL OF PROMINENCE LOOPS

The associated magnetic pressure has the local gradient

IB 1, 2cosc B2 0 . (5)
- B2) : l -a 5

We use here rationalized mks units with the magnetic permeability P = 47r x 10-
henry m - 1. Here lr is a unit vector in the 0 = 0 direction which is opposite to the solar
gravity. We remark that the radius of curvature for the circular projection of the bipolar
field line that passes through the point q = 0 is a/2 cos c.

Next, we consider the perturbation to the pre-existing magnetic field, caused by the
intrusion of the prominence loop. An axisymmetric distributed current carried by the
loop will produce an azimuthal magnetic field l,[I./27q outside the loop, as though
the total longitudinal current I. I 12 J_ 21rq dq were concentrated at the axis q = 0. The
polarization currents induced at the periphery produce another potential magnetic field
in the exterior region. The latter perturbation is as though it were produced by a couple
of line monopoles located inside the loop. By the method of images, in analogy to image
charges in electrostatics, the photospheric monopoles + W. at q = a, 0 = 7r P x induce
images consisting of monopoles of strength ± PM at the inverse points q = Q 2/a,

= -T a (cf. Yeh, 1938). From the flux function

=rIEf log I + -FM'atn q sin 0 - a sin c + atn q sin0 - (Q 2/a) sina +
27r q 21rL q cos4 + a cosca qcosp+ (Q /a)cos..

+-_M~atn qsinp+asin a qsinp+ (QU/a)sin 1
+ -LM t atn2(6

27rL qcos4 + acos a q cos + (Q2/a) cos ' (6

we obtain the perturbed magnetic field

B = 1 1 -_ +1 l, 1I1 +
2 7rq

P (1[q + acos(p + oc)] - 1,Ia sin(0 + i)++

27rI q2 + 2aq cos(0 + 0C) + a2

+ lq[q"+ (Q 2 a)cos(0 + c 21a)sin(0 + x) +
q+ 2(Q 2 /a)q cos (0 + ) + (Q 2/a)2 J

+ Fm l[q + a cos(cb- :o] - 1,a sin(0 - )+

21r I q2 + 2aq cos (0 - cz) + a 2

+ lq[q + (Q 2/a) cos(0 - c )] - 1,(Q 2/a) sin(p - 1) (7)
q 2 + 2(Q 2/a)q cos (0 - S() + (Q 2/a)2
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The longitudinal component of the magnetic field is not perturbed.
The field-line topology of the transverse magnetic field, given in Equation (7),

depends on the ratio pIEP1 M. In the case of 1E 0, there are only a pair of X-type
magnetic neutral points, located at q = Q, 0 = 7i arc cos [2(a/Q + Q/a) -' cos a] (see
Figure 2(a)). In the case of IE : 0, there are additional neutral points in the
exterior and interior regions, besides the aforementioned pair. They stay on the
periphery if yI1/v' has a value between - 4Qa sin o/(Q 2 - 2Qa cos ct + a2) and
4Qa sin O/(Q 2 + 2Qa cos + a2) (see Figure 2(b)), and coalesce to be outside the
periphery otherwise (see Figure 2(c)). The additional neutral point in the exterior region
is of hyperbolic type, so that the two line monopoles are encircled by field lines in the

(a) (b)

(c) (d)

Fig. 2. Field line topology for the transverse magnetic field. (a) With I = 0, (b) with 0 <P'EI <

< 4Qa sin O/(Q 
2 + 2Qa cos o + a2 ), (c) with M1I'& slightly greater than 4Qa sin a/(Q 2 + 2Qa cosoc + a2),

(d) with iu,
1 IFM significantly greater than 4Qa sin oy(Q 2 + 2Qa cos a + a2).
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distant region of large radii. On the other hand, the additional neutral point in the interior
region is of parabolic type if JtIE[ 1M is in the abo ie-mentioned range (see Figure 2(b))
and bifurcates into a pair of X-type neutral points otherwise (see Figures 2(c) and 2(d)),
so that the line current at the center is encircled by field lines in the near region of small
radii. If [I W I M is very large, the two neutral points outside the periphery will be on
the two sides of the line p = 0 or 7t instead of on the line p = 0 or it (see Figure 2(d)).
The above discussion includes the interior region fi r the sake of global clarity.
Physically, Equation (7) is valid only for the exterior region.

To be in conformance with the accepted idea that the normal component of the
photospheric magnetic field is not altered by the coronal currents, we may include the
polarization currents induced on the photosphere (Kuperus and Raadu, 1974). This will
remove the additional polarity neutral lines, which appeared spuriously in Figure 2. By
the method of images the polarization currents on the photosphere amount to couples
of line current and couples of line monopole inside the cylinder whose surface represents
the photosphere. These induced photospheric currents together with all the currents in
the prominence loop produce a magnetic field that has no normal component on the
photospheric surface. In turn, the photospheric polarization currents induce their own
image currents inside the prominence loop so that the magnetic field resulting from all
currents remains tangential on the surface of the prominence loop. The additional
induced currents in the prominence loop also amount to current couples and monopole
couples inside the prominence loop (see Appendix).

3. Hydromagnetic Buoyancy Force on a Prominence

The magnetized medium surrounding a prominence loop exerts its hydromagnetic
pressure on the immersed loop as an extraneous body. The surface integral of the
ambient hydromagnetic pressure yields the hydromagnetic buoyancy force

2nr

FP -lq A + 1- B. (8)
0

on the immersed loop.
The ambient magnetic field at the periphery q = Q is

B()=I1r +1 B j 1 [ -a 2 sin(0 + ) +

B,)=I.I + B sin Q2 + 2Qa cos(o + g,) + a2

+ a 2 sin (4 p-c0 1 + 1E (9)
Q2 + 2Qa cos(op- a) + a2J + 2tQ
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from Equation (7). Accordingly, the ambient magnetic pressure is

1 1 1 1 F - a2 sin (0) +  (1
-BA BM+- B , +  (10)
2p B  2y 2, 4 sin 2 LQ 2 + 2Qa cos (0 + + a-

+ a 2 sin(0 - 7) 12 + 1
Q2 + 2Qa cos( - X) + a2] 27rQ sin

-a 2 sin (0+ ) a 2 sin(p-o) 1! /lE

Q2+2Qacos(+x)+a2 Q2+2Qacos(O- )+a 2 2 (27rQ) 2

Only the two circumferentially inhomogeneous terms, one proportional to IEB _L., and
the other proportional to BE ,, will contribute to the integral J2 - lq 2A - ' BEQ d4 for
the diamagnetic buoyancy force (Yeh, 1983). The former term yields rIJEB ± . It
signifies the force on the line current that accounts for the conduction current in the
interior region exerted by the two monopoles that account for the external currents. The
latter term yields the force on the two image monopoles that account for the polarization
currents in the peripheral regin exerted by the two external monopoles (see Figure 3).
The result is a diamagnetic force in the direction of 1,. Its magnitude is

F() = IEB, + F 2c Bc 2 c0Q2 (11)

ua

per unit axial length. The geometric coefficient

2a6  (12)
(a2 _ Q 2)(a 4 - 2a2 Q2 cos2a + Q4)

has the limitiig value of 2 for very small value of Q/a. This diamagnetic force can be
written

F(m)=IEx B , +F ( I B2)7rQ2 (13)

in terms of the current carried by the intruding loop and the pre-existing magnetic field
and magnetic pressure gradient produced by the external currents. Here IE = 1:IE is
the volume integral of tle'current per unit axial length. The azimuthal current density
has a volume integral equal to zero. So does the volume integral of the polarization
currents. Inclusion of the polarization currents on the photosphere will incur an
additional force acting on the prominence loop. The additional force is essentially
lr/I /47-(ro - Ro). It is significant when the prominence loop is close to the photo-
sphere (see Appendix).

In addition to diamagnetic force the hydromagnetic buoyancy force also includes
hydrostatic and hydrodynamic buoyancy forces. In the absence or neglect of motion for
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Fig. 3 Biot-Savart forces on the line currents and monopoles ins;de the prominence cylinder exerted by
the line currents and monopoles outside.

the surrounding medium, the external gas pressure is entirely hydrostatic. Hydrostatic
pressure impresses directly on the periphery of an immersed body, without modification.
Thus, the ambient gas pressure is

p4 () =p - pgQ cos , (14)

with g = GM o /r being the Vavitational acceleration at q = 0. Here G is the gravitational
constant and Mo is the solar mass. For our present discussion, we consider the situation
when the straight axis of the loop lies perpendicular to the solar gravity g - lrg. By
virtue of the hydrostatic relationship Vp (s) = pg between the hydrostatic pressure p(S),
the mass density p:, of the external medium, and the solar gravity, we obtain the
hydrostatic buoyancy force (Archimedes' law)

F(s)= -pg7rtQ2 , (15)

from the integral J'f 0 lqpA Q do. It is in the direction opposite to the solar gravity. The
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magnitude of this hydrostatic buoyancy force is

F(s) = p G 7CQ 2 . (16)
r2

4. Hydromagnetic Stress in a Prominence Loop

Now, we describe the helical magnetic field inside the prominence loop. The current in
the interior region must be so distributed that not only the current density but also the
solenoidal magnetic field are tangential at the peripheral boundary. In a straight cylindri-
cal region, an axisymmetric current density without a radial component will produce an
axisymmetric magnetic field without a radial component too. We consider the current
distribution

JE(q) = 1:Jo + I B q/Q (17)
" pQ (1 - qZlQ2)1/2

It produces the magnetic field

Q q-1f ( 2\I/2

BE(q) = 1z J, dq + 10- 1 iJq dq = 1.B0 1--. / + , IJoq
fq f Q2  2

q 0 (18)

with helical field lines. At the axis q = 0, where the azimuthal components of the current
density and the magnetic field are necessarily zero, the axial current density has the value
Jo and the axial magnetic field has the value Bo . At the boundary q = Q, where the
longitudinal component of the magnetic field is zero, the boundary magnetic field is

AIE (19)
27rQ

with
/E = JoirQ2 . (20)

The pitch angle of the helical field line, given by atn (B,/Bz), increases from 00 at the
axis to 900 at the boundary.

The spatial transition between the ambient and boundary magnetic fields at the outer
and inner surfaces, respectively, of the thin peripheral layer is accommodated by the
polarizatiorl current. From the expression 1q x (BA - BB), we obtain the surface density
of the polarization current

ip,= 1Z B. X

2a 2 (Q 2 + a 2) cos 0 + 4Qa3 cosa Ix - l -B, o
[Q2 + 2Qa cos( - a) + a 2 ] [Q2 + 2a cos(O + a) + a2]

(21)

per unit length.
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The peripheral layer is a thin region of concentrated current without significant mass
accumulation. Its mass is negligible. so it cannot sustain a non-zero force. Accordingly,
the magnetic force associated with the polarization current must be balanced by the
mechanical force associated with the gas pressure because the gravitational force is nil
there. In other words, the hydromagnetic pressure is invariant across the thin peripheral
layer. Namely,

1
PA + B A PB + - B 2 "  (22)2#i 21t

Since the gas pressure in the exterior region is hardly perturbed by the intrusion of the
prominence loop, the ambient gas pressure is essentially equal to the pre-existing
external gas pressure at the periphery. The external gas pressure, even not perturbed,
may have a significant inhcmogeneity caused by the effect of the solar gravity.

Substitution of Equations (9), (14), and (19) into Equation (22) yields

1 2

pBWe) = p'c - p'gQcos 0 + 2p B2 + (23)

IB2 1 [ -a 2 sin +a) + a2 sin( -0) 2

21 sin2 Q2 + 2Qacos( +  + a2 Q2 2Qacos(o - c)+a 2

+.1E B [ -a 2 sin(+ a-) 2 2+2n - -L a+ Q2+2Q'aos(_-)+a2l
27rQ sin c + 2Qa cos (0 + o ) + a +

The imt al gas pressure varies from the boundary value P. at q = Q to the axial value
po at q = j. Thus. the spatial variation of the gas pressure inside the loop can be
accounted for by two parts:

PE = PE + PE?. (24)

The externally-caused part,

p(e. = - Fs (r - r,,)- F(- q cos 0,(25)
PQ2 2(25)

varies from the value of zero at the axis to a circumferentially undulatory value
- (F(s) + F("') cos p/7rQ at the boundary. The internally-caused part varies from po at
the axis to P8, + (Fms) + F(m)) cos p/7rQ at the boundary. It is well represented by

,I o(I - ) q_ (26)t~a = o -Q P2 Q2

with

PB = P f, + I B2 ., (27)
22
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signifying the circumferential average of p(). The externally-caused gradient of the gas
pressure provides the externally-caused mechanical force density

(C) - F(S) + F) (28)
rQ 2  7rQ2

that manifests the hydromagnetic buoyancy force. The internally-caused gradient of the
gas pressure provides the internally-caused mechanical force density

- 7p(l) = 1 2 PO - PB q (29)Q Q
Accordingly, the resultant mechanical force density is

-VpE=-g+ x +F -7 - B2  +-TE og+ rQ 2 2A )00

+ 1q 2 P- (P + 'B'!, ) q (30)
Q Q

The magnetic force density in the interior region is readily obtained from
Equations (17) and (18). The result

JE x B.= q( (toq (31)\AQ 2 FJ QQ

indicates that the self-induced Lorentz force exerting at various mass elements of the
prominence is in the radial direction. Its magnitude is zero at the axis, where the
azimuthal components of both the current density and the magnetic field are zero. By
axisymmetry, the volume integral of the Lorentz force density is zero. This self-induced
magnetic force is the force exerted on a part of internal current by other parts of the
internal currents, without involving the external currents.

5. Motion of a Prominence Loop

We have partitioned the hydromagnetic force density acting at various mass elements

of a prominence loop into two parts:

f = Irfo + IH -. (32)
Q

The externally-caused force density

fo = - + F(- (33)
.r67  7rQ 2
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is uniform over the cross-section of the loop. The internally-caused force density is
proportional to the distance from the axis of the loop. The latter has the value

H 2 2(o+ - 0 2 2 8=
Q - PJdQ (34)

at the periphery. In a similar manner, the velocity of a mass element of the loop may
be partitioned into two parts:

UE = 1rU0 + lqV q (35)Q

Here uo is the common speed of the translational motion and V is the peripheral speed
of the expansional motion. The translational velocity is uniform over the cross-section
whereas the expansional velocity is proportional to the distance from the axis. The ratio

q/Q associated with an individual mass element is invariant in time. In accordance with
Newton's law,

dpE uE= -VpE+J~x B E +p~g, (36)

the translational motion of the loop as a whole is driven by the externally-caused
mechanical force and the gravitational force whereas the expansional motion of the loop
relative to its centroidal axis is driven by the internally-caused mechanical force and the
self-induced Lorentz force. Accordingly, the dynamical evolution of the prominence
loop is described by the equations

d ro = , (37)

dt

dPE - U = fo (38)

for the translational motion and

d
-. Q = V, (39)
dt

d
PE - V = H (40)dt

for the expansional motion.
Additional equations for the dynamical evolution are provided by conservation of

mass and magnetic flux carried by the prominence loop and conservation of energy in
the physical processes involved. The mass of the loop is PE irQ I per unit axial length.
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Hence,
d pEQ 2 =0. (41)
dt

It follows from Equation (18) that the longitudinal magnetic flux of the loop is 2BonrQ
2

and the azimuthal magnetic flux is JoQ 2 per unit axial length. Hence,

d
- BoQ 2 =0, (42)
dt

- JoQ 2 =0. 
(43)

dt

As to the conservation of energy, the energy in a prominence loop increases or decreases
by the amount of energy gained or lost through energy transportation across the
peripheral surface and energy deposition to the volume. The former includes work done
by ambient pressure, heat transfer by thermal conduction, and longitudinal flow of
energy toward the footpoints of the prominence loop. The latter includes work done by
gravitational force, energy deposit by electrical current, absorption of irradiation,
emission of radiation, and deposition of mechanical energy. Upon the use of equation
of motion and equation of mass conservation, the equation of energy conservationd f f f' (-LE

(t 2E + 2PE)dV= -u-padA + fff(uEPE9g+ JEE)dV+ S

yields the entropy equation

f[ffPEdV+ f fP(VuE)dV = S.
dtJJ PE J J E.

Here S denotes the net source term for all entropy-generating processes. By virtue of
7.UE being equal to 2Q- ' dQ/dt according to Equations (35) and (39), the entropy
equation can be written

.Q - /3 Q 4 /3 pEdV = S,
dt J p d S

which is nothing but,

d [2( Po + PB)7rQ 2 +4 3]= S, (44)

since the volume integral for the thermal energy is equal to 2(SPo + 2pB)nQ

The above eight Equations (37)-(44) serve to determine the temporal changes of the
eight variables: ro, uo, Q, V, pE, Bo, Jo, and po in terms of the conditions for the external
medium. The latter are specified by p. , p , B,! x , and B1 _.
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The above analysis is done quantitatively for the case of uniform mass density in the
prominence loop. In reality, the mass is likely to concentrate in the pit of the helical field.
Spatial variation of the mass density can be accounted for by suitable modifications.
For example, the axisymmetric variation PE = po(1 - qZ/Q 2 ) + Paq2/Q2 will incur the
following modifications. The quantity PE in Equations (33), (38), and (41) is to be
replaced by the average mass density PE = 1po + IB' but the one associated with the
expansional inertial force in Equation (40). is to be replaced by 5po + 1p,, which is
the average of PE weighted by q/Q.

6. Equilibrium Configuration for a Prominence Loop

A prominence loop in equilbrium with its surrounding medium has neither translational
motion nor expansional motion. In other words, the hydromagnetic buoyancy force
counterbalances the gravitational force, and the internally-caused gradient force of gas
pressure counterbalances the Lorentz force of helical magnetic field. From
Equations (38) and (40) with uo = 0 and V = 0 we obtain

JO =O -p GMOF 2 cos_ B2 , (45)Bz. rg

1 1 1 Q (46)P +- B =p+-B Blo+-tJJQ2 . (6

These two constraints are necessary for equilibrium. Any changes of the parameters
from the equilibrium values will initiate motion. Eruption of a quiescent prominence loop
is then described by the dynamical evolution given by Equations (37)-(44).

It should be remarked that inclusion of the mirror-current effect will modify

Equation (45) to

(pE _ P,)Q 2 GM 22 2+
G0+ IFB _B± + rF o L% BonQ +

2 u2

+ II R = 0. (47)
21rro(r 2 - R')

This condition or equilibrium for no translational motion reduces to that obtained by
Van Tend and Kuperui (1"978) in the limit of ro - Ro << R. and Q < a.

7. Discussion

Prominences appear in various morphologies. They all involve a system of complex or
simple bundles of magnetic flux. We consider a prominence loop to be a flux rope that
intrudes into the solar atmosphere as an extraneous body immersed in a separately
magnetized medium. The time-scale of interaction between the two current systems is
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not long enough to allow magnetic interconnection between the two kinds of field lines
of different connectivity. The magnetic separation is maintained by currents induced at
the interface of the two flux systems. By virtue of the high electrical conductivity of the
solar plasmas, the induced currents concentrate spatially to form a surface current at
the periphery. This is in keeping with the cellular structures common in astrophysical
plasmas, with thin boundary layers separating plasma regions of widely different
characteristics. The polarization currents have paths separate from the two interacting
current systems. The spatial transformation between magnetic and mechanical stresses
across the peripheral layer of the polarization currents means that the plasma beta (viz.,
the ratio of gas pressure to magnetic pressure) can vary significantly from one region
to another region. With the gas pressure higher inside, the plasma beta can have a higher
value in the prominence loop than in the surrounding medium, although its value is likely
still less than unity.

The dynamical model of moving flux ropes presented in this paper is applicable to
the helical prominences observed by Vr~nak, Ruidjak, and Brajga (1988). It could also
be applied to flare loops. Recent observations obtained by the HXIS and FCS
instruments on board the Solar Maximum Mission spacecraft suggest that the hot loops
seen in X-rays are at much higher altitudes than the cool loops visible later in H-alpha
after cooling (Svestka et al., 1987). These post-flare loops are likely formed during the
process of flaring. Their descending motion is accompanied by shrinking in volume. It
would be of interest to explain the latter feature by the dynamics of flux ropes.

Appendix. Photospheric Effect

The presence of a prominence loop in the photospheric magnetic field involves the
interaction of two systems of magnetic fluxes. One of them is associated with the
curents carried by the prominence loop and the other with the subphotospheric
currents. In the interaction, polarization currents are induced on the surface of the
prominence loop and the photospheric surface so that field lines do not penetrate the
former surface and no additional field lines go through the latter surface. In other words,
the resulting magnetic field is tangential on the surface of the prominence loop and has
an unaltered normal component on the photospheric surface.

By the method of images (cf. Yeh, 1988), the induced currents can be accounted for
by current couples and monopole couples if we approximate the photospheric surface
by a cylinder. As shown in Figure 4, the conduction current lE at q = 0 induces a couple
ofcurrents: + I. at q = ro and - IE at q = ro - R'/r o. The image induces its own image:
- 1E at q = Q2/ro and + E at q = Q2/(ro - R'/ro). The induction of images of image
yields a series of current couples:

+ I E at q = b2,, and -? at q = b,, +I, n = 0, 1, 2,...

inside the photospheric cylinder and another series,

-IE at q=Q2/b 2, and + E at q=Q 2/b,,,+  n=0,2,...,
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Fig. 4. Currents in the interaction of two systems of magnetic fluxes. The source currents are represented
by a line current at the axis of the prominence and a pair of line monopoles on the surface of the photosphere.
The induced currents are represented by series of current couples and monopole couples inside the

prominence cylinder and inside the photospheric cylinder.

inside the prominence cylinder. Here bo is equal to ro, bl =ro-R /ro, and

b2+ =t- ft /(ro - Q2/b). These two series of current couples together with the
conduction current produce a magnetic field that satisfies the required boundary condi-
tions on the two'surfaces of the prominence and the photosphere. Likewise, the pair of
photospheric monopoles o n at q = a, th = induce a series of monopole

couples:

inside the prominence cylinder and another series,

+ fatq=a,,, ck--rc , n=1,2,3....,
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inside the photospheric cylinder. Here ao = a, z% = a, and

with

.2 Q 4ro -2r °  cos (Xn +-2

an an,

2 + r.. Q4 2 Q2

an + 1 Iaa sna

Cos =, E- 2rr cs+IOI

These two series of monopole couples together with the pair of photospheric monopoles
produce a magnetic field that also satisfies the required boundary conditions.

The resultant magnetic field yields the ambient magnetic field

BA1 {PIE +

+ [ItI Q2 + b2.,Cos + - IiE Q + b~n+1  1 CS+

+2 E 2 - Q/2 sin 0Q 2i si2

n QS2Qbcos + bQ + 2Qb,+I cos+ b + 1

PPm -cacsin ((p+ an) +____ - ansin (0 - aj
+ Yo-++ r+

n- 7r Q2 +2acs(+r)+~7 Q2 2Qcs(-L)+ J

on the surface of the prominence loop. The integral joud q A 2dildst

diamagnetic buoyancy force

sin =e l+(2nQ +

F(')= Ir -IE Q2 (b 2mb Q +isb

rLmnO ~Lm-0

n,=oL + b 2 + 2Qmb ,cos , (b + b + 2a

x b.[_ -b= +si+ n 2 +1=. 2 m 2. 1 na CiO -an ) +
X+1

(Q, +2Q2a,,bQ, a cos (+ab+ .) +a,(Q 4 -2Qanb 2m cosa +ab2)

an = - Q/a sin an E a M sinanm x
/1 n=O r Mn-0

anam COSa,,_Q 2 COSa, +
[Qb - 2 Ia,,a aCos&,b m + co [Q, - 2Q2 a,,amc+ bz, + m, )n "0 COS (n + a Cb-' +m a'a

1 o 4oo 2sna,,0
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E, 2 - I + Q 2 (b2 -b,,,, I) z (b2 . - b2,, I) Xn=OLT b 1 " m-O

x (b2n + b2n+ I)b2mb 2m+ -I Q 2(b2. + b2m+ I)

(b~n+ Ib 2 m. -Q 2 ) (b2 n b2 . I -Q 2 ) (b2n ,I b2 ,-Q 2 ) (b2 n b2.-Q)

acting on the prominence loop. It is equal to the vector sum of the Biot-Savart forces
(see Yeh, 1983) on the conduction and polarization currents in the prominence loop
exerted by the conduction and polarization currents on the photosphere. From its
leading part,
P EF m sina 1 4a3 Q 2 sin 2 c COS R 2  1

[ i a +i V (a2 _ Q2 ) (a4 - 2a 2Q2 cos2c+ ~ + E 21rro(r 2 - Ro)J

it is seen that the additional force due to the photospheric effect is significant when the

prominence loop is close to the photospheric surface. The term proportional to I 2

represents the mirror-current effect discussed by Van Tend and Kuperus (1978).
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Abstract. The occurrence of modulational instability in the current sheet is investigated. Particular attention
is drawn to the plasma micro-instability in this current sheet (i.e., the diffusion region) and its relation to
the flare process. It is found that the solitons or strong Langmuir turbulence is likely to occur in the diffusion
region under solar flare conditions in which the electric resistivity could be greatly enhanced by several
orders of magnitude in this diffusion region. The result is a significant heating and stochastic acceleration
of particles. Physically, the occurrence of soliton and strong Langmuir turbulence can be identified with a
sudden eruption of an electric current leading to a local vacuum in which an electric potential is formed
and results in the release of a huge amount of free energy. A numerical example is used to demronstrate the
transition of the magnetic field, velocity, and plazmia density from the outer MHD region into the diffusive
(resistive) region and, then, back out again with the completion of the energy conversion process. "fhis is
all made possible by an increase of resistivity by 4-5 orders of magnitude over the classical value.

1. Introduction

The solar flare has been recognized as a violent electromagnetic phenomenon accom-
panied with the release of a huge amount of energy (- 1028-1032 ergs) in a rather short
time (i.e., time-scales ranging from a few seconds to about a thousand seconds). Based
on both observation and theoretical study, it has been agreed that this release is derived
from the huge amount of energy that is stored in the various configurations of the
magnetic field (see Figure 1). It has been suggested that during the onset of a flare, this
stored free energy is converted into heat and kinetic energy of the particles through
magnetic reconnection. This process is believed to be triggered in a current sheet either
spontaneously by the resistive instability such as the tearing mode (Furth et al., 1963;
Ugai and Tsuda, 1977; Van Hoven et al., 1980) or driven from outside when topologi-
cally separate flux systems are pushed together (Priest, 1983; Sonnerup, 1983).

It can be seen from the schematic magnetic topologies in Figure I that when the two

different polarity flux systems are pushed together (i.e., Figures 1(a), 1(b)), the region
near the X-point collapses and current sheets are then formed (Dungey, 1953;
Syrovatskii, 1966). When magnetic flux tubes are braided together (Figure l(c)), no
equilibrium can be obtained in which the current sheets may also form (Syrovatskii,
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© 1989 by Kluwer Academic Publishers.

32



M. T. SONG ET AL.

(a) (b) C)

//

(d) (e) f)

Fig. 1. Current sheet formation in " ariously-proposed magnetic topologies.

1978). However, when these flux tubes are twisted with the same direction of neighbour-
ing flux tubes, then the current sheets can also be formed as shown in Figure 1(d).

Furthermore, the current sheet can be formed through ideal magnetohydrodynamics
(MHD) instability processes such as the kink instability as shown in Figure 1(e) (Spicer,
1977; Parker, 1979; Hood and Priest, 1979). There is one additional possibility: as new
magnetic flux emerges from below the photosphere (i.e., from the convective zone), it
will create a current sheet at the interface of the overlying magnetic field as studied by
Heyvaerts et aL (1977). Practically, the formation of a current sheet can be considered
to be a dynamic process; therefore, the concept of driven icconnection in a flare process
suggested by Sweet-Parker-Petschek seems to be a commendable one. Now, we shall
examine this model briefly.

As shown in Figure 2, a slow steady-state inflow (along the x-axis of two oppositely-
directed strongly-magnetized plasma flows), moves toward the current sheet. Sub-
sequently, a rapid outflow of weakly magnemtized plasma will be generated along the
sheet (i.e., y-axis). According to Bernoulli's law,

P +. = P +  
2

33



TURBULENCE IN SOLAR FLARES

y

L 0 x L
°

0L

(a) (b)

Fig. 2. Flare models. (a) Sweet-Parker model; (b) Petschek model. The resistive MHD region (with
dimensions L and 5) is surrounded by the ideal MHD region everywhere else.

and thus the outflow velocity is equal to the Alfvn speed

VA Bx
,/4irp *

From the law of conservation of mass, we may write

SVot = L Vin, (

where 6 and L are the thickness and length of the current sheet, respectively. The current
intensity within this sheet,

c C B

4nr 47r c

along the z-axis. Employing Ohm's law, we get,

c B., = j E. = oEinsid = Outside = T B (2)
41r 6 c

with c and a being the speed of light and electrical conductivity. Combination of
Equations (1) and (2) yields,

Vi n = VA 4r aLVA - = V-(3)

with R, being the magnetic Reynolds number.
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For a typical pre-flare state (typically taken to be: No - 2 x 1011 cm ' B - 500 G,
L - 109 cm, T - 104 K, o~ 107 T 3/2 1013s- 1, VA00 ~ 2 .8 x 108 cm s '), (then),
Rm, ~3.4 x 1010. However, the inflow velocity which represents the annihilation speed
of magnetic field becomes too small to explain the rising time of a flare (i.e., _ 102_103 s)
as discussed by Parker (1963). In order to remedy this difficiency, Petschek (1964)
devised a new model referred to as the Petschek mechanism for reconnection. In this
model, Petschek introduced a slow magnetoacoustic shock to divide the flare region into
three parts: the outer or MHD region; the wave or jet region; and the diffusion region.
In the outer region, there is a strong magnetic field and slow speed flow. The wave region
is just the opposite where there is a weak magnetic field and high speed flow. The
diffusion region is a very small one such as 2y* x 2x* as shown in Figure 2(b) where
(1/2)L and (1/2)(5 decrease to y* and x*, respectively.

Taking the compressible factor c = 1, the maximum annihilation rate could be com-
puted,

Vin = VAoo (4 ln[2R.(V/Vo)2]p-' J

0.042VA,- - 1.02 x 107 cm s -1 (4)

The annihilation time becomes

L/V5n ~ 102 S ; (5)

the length of the diffusion region becomes

y* = c21[8 aVA.(Vf/IVAo) 2 ] _ 8.3 cm, (6)

and the thickness of the diffusion region becomes

x* = (c2/41ro)/Vin = 0.702 cm. (7)

From these numerical results, we find that the model could match the rising time of
a flare. However, the dimension of the diffusion region becomes unrealistically small;
more specifically, the thickness (i.e., x*) becomes close to or even smaller than the
Larmor radius.

By taking the extreme compressible factor a to be 2.75 x 10-i as suggested by Parker
(1963), we find that V, - 3.6 x 107 cm s - ', L/V,, - 27.7 s, y* - 2.43 x 10 44 cm and
x * = 0.199 cm. This implies that the diffusion region of a flare would be degenerated
to a point (i.e., the origin as shown in Figure 2) or the separator. Based on this idea,
a number of authors (Coppi and Friedland, 1971; Sonnerup, 1973) developed a simi-
larity solution which allows V. to approach the Alfv~n speed (VAo). Obviously, such
a tiny diffusion region is insignificant energetically and acts only as a source for
producing the slow MHD shocks. These slow MHD shocks create hot fast jets of
plasma with typically . of the inflowing magnetic energy being converted into kinetic
energy and 2 into heat as demonstrated by Priest (1993).

The above description is a modified Petschek model that has been developed for years
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when the original Petschek's model confronted great difficulty since its presentation in

1964.
Another way to remove this difficiency is by introducing the tearing mode instability

into the flare -rocess. This instability can break the current sheet into small fragments

thereby reducing the length L and then increasing the annihilation rate (see Equation (3),

and also refer to Coppi and Friedland, 1971). Friedman and Hamberger (1968, 1969)

drew attention to the role of microturbulence in the current sheet; this additional

physical process may enhance the annihilation rate and provide a realistic physical

dimension of the diffusion region. Also, experiments indicate that the passage of a

sufficiently dense current through a plasma leads to microturbulence which obstructs

the electron drift and gives an anomalously small plasma electric conductivity. Thus,

as soon as the microturbulence appears within the current sheet, the rate of magnetic

diffusion greatly increases and would also give a reasonable physical dimension (i.e.,

thickness and length) of the current sheet.
In this study, we shall demonstrate that Petschek's mechanism for reconnection

during the onset of a flare could be improved by introducing the microturbulence process
within the current sheet. In Sectiorn 2, the theoretical model for Petschek's mechanism,
in which strong microturbulence or modulational instability can occur, is described. In

Section 3, the governing equations for the modulational instability are presented and

investigated. The effect of solitons within the current sheet is discussed in Sc ii 4.
Final remarks on our flare model are presented in Section 5.,

2. Theoretical Analysis

In a flare region, the estimated initial state (as given above) are typically: plasma number
density No - 2 x 10"1 cm - 3 , B,, = 0.5 kG, characteristic length scale L - 109 cm and

temperature To - 10' K. Within the current layer (i.e., B - 0), the total pressure balance
gives a plasma compression factor c = N0kT0[NmkT - NokTo/(B2/8r)
2.76 x 10-5 . The Larmor radius of electrons (-mVLc/eB) for the magnetic field

strength of B - 10 to 100 G is in the range of 0.4-0.04 cm. The thermal velocity

(Vr = (kTlme) / 2) is 3.89 x 10' cms- ; electron plasma frequency cope=

(41rNee2/me)1/2 = 2.52 x 1010 s '; and the Debye length Ad = k' I (wave number cor-
responding to electron plasma oscillation) = VTeIcop = 1.54 x 10-3 cm. The classical

electric conductivity (a) depends on the electron-ion effective collision frequency Veff

which is the reciprocal of the Maxwellian relaxation time,

(ra = lmie (2kT) 3/ 2 (8irnee4 lnA)-' with lnA = ln[(kT)3/2 e- 3 (rn)- 1/2] , 9.8. Then
Veff ( )-' T 1.9 x 107 s- , such that a= ne2/meve = 2.62 x 107 T3/2/lnA . Sub-
sequently, the mean free-path among particles is A, = V /I ff - 1.9 to 7.8 cm.

It has been known that the validity of the magnetohydrodynamic approximation in

the current layer may be characterized by A > A, r >% with A and T being the charac-

teristic length and time in which plasma parameters may show significant inhomogeneity

(Boyd and Sanderson, 1969). Based on these characteristics, the classical Petschek's

model cannot meet the described criterion wherein x* (the Petschek's characteristic

length) - 0.2 to 0.7 cm and A < A, = 1.9 - 7.8 cm.
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One of the means to resolve this diffliculty is to increase the effectiveness of the
resistivity ('- 1). The description given in Equations (4), (6), and (7) indicates that, if
a- I were to increase by 4 orders of magnitude, then the critical spatial characteristics
x* and y* would be increased by the same order of magnitude without any appreciable
change of the inflow plasma velocity (Vn). Accordingly, this possibility would lead to
physically meaningful dimensions of the current layer in a solar flare process. That is:
x* would increase to 2 x 10 or even 7 x 10 cm, and y* would increase to 8 x 104

or even 8 x 108 cm. Now, the question is: can a- be enhanced by 4 orders of
magnitude with a realistically physical process in the solar atmosphere?

Under a thermal equilibrium state, the resitivity (i.e., a-= (me/e 2) (vCf/in))
depends on the temperature only. Thus, we may express (Veff/n)therm, in terms of the
energy density Wr- of Langmuir waves at thermal equilibrium conditions, as

(ef I ~ e kBT.

nl 'therm l nk,- T V 2r 2

16 2 e4 nA(8)
,4m_, (2 kB T)3/2

If we consider that there is a turbulence of ion-acoustic waves whose energy density
is W' in the process, the effective ion-acoustic collision frequency between electrons and
ions can be expressed (Tsytovich, 1970) by

(~~~~ -cr X 1t 2_)W tx(T / er (9)
n /ion-acoustic 2 n nk, T 2 TOI/f \ ntherm

where T. and T are the temperatures of electrons and ions, respectively, and a is the
ratio of W/Wr-, with W. being the energy density of ion-acoustic wave at thermal
equilibrium (i.e., Ws-= W.(T,/T,) /2).

According to the order of estimation, it was found (according to the solar conditions
assumed above) that W./nk T~ WT./nkBT, 10-". Under these conditions there
exists linear wave or weak ion-acoustic wave turbulence, the ratio of W"s/nk 8 T becomes
10- 2, thus the value of a could be on the order of 102. However, when the nonlinear
wave or strong turbulence is excited, W'/nk8 T could be unity and then o - 10'. This
implies, according to Equation (9), the resistivity (- a-') could be 10' orders of
magnitude larger than its classical value at thermal equilibrium when the strong
turbulence is excited. It is worth noting that Spicer (1977) has been able to show that
anomalous resistivity in the current layer can only be 102 (order of magnitude) larger
than its classical value.

The present proposed improved Petschek type flare model is similar to the work of
Coppi and Friedland (1971) except that we have included the strong turbulence effect
in the resistive region. Thus, the basic governing equation appropriate for this study can
be described by a set of two-dimensional time-stationary, MHD flow equations such
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as,

V (pV)= 0, (10)

I
p(v.V)v= -V(c'p) + -j x B + LV2v + V(V. v), (11)

C

V.B=O, 7 x B = 41r J, (12)
C

VxE=0, J=q-I(E+- vxB ) (13)
c

where c, is the sound speed (i.e., c, = Ip) being almost a constant except in the current
sheet. Since plasma turbulence exists in the current sheet, the resistivity (q/) could not
be a constant. However, the electric field E (= V.B,c)2 and viscosity (M) are con-
sidered to be constant. To seek a solution, we introduce the magnetic field potential and
velocity potential as:

pv=Vxj, B=VxA;

where
A =A(x, y)2, (x, y)2.

Thus the set of basic governing equations becomes,

[(V/ X )Vl - MV2 _ -1 V X * + V2 A + V(C2p) = 0, (4

47r

Z(DmV 2A + v,.B") + p- (V x *) x (V x A) = 0, (15)

with Dm = IC2/47r.

Now, the task left for us is to seek a solution for this set of Equations (14) and (15)
with proper boundary conditions in both the ideal MHD and in the resistive MHD
regions, respectively, as shown in Figure 2. In the ideal MHD region the viscosity and
resistivity terms can be neglected; Equation (14) reduces to V 2A = 0, because the terms
of V x 4' and V(c'p) vanish thereby implying that the magnetic field must be a potential

field (i.e., no current). If we regard p being constant or known, 4 can be solved from
Equation (15). This solution represents an asymptotic one in the outer region (i.e., ideal
MHD region). In the resistive region (IxI < 104 cm, lI < 10' cm), the viscosity effect
is ignored because the density and turbulence are not strong enough in this region. With
this assumption, Equations (14) and (15) turn out to be three equations for three
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variables p, A, and '. Using the boundary conditions at the origin (x = 0, y = 0); p -+ a1,

A -. a2 [(L -(1 +a- -' ) x")]b and i-+ -a 3 xy.

Together with continuous properties at tle interface between the MHD and resistive
regions, the inside solution can be consistent with the outside solution. The asymptotic
features of B and V near x- and ',-axis are shown in Figure 3. These solutions are similar
to those given by Coppi and Friedland (1971) and Vasyliunas (1975) except for the fact

that the present solution gives more realistic physical dimensions for the resistive region.
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Fig. 3. Magnetic field, velocity, and density profile transitions from the ideal MHD region into the resistive
MHD region along the x-axis (i.e., y = 0). (a)By profile (b) v,, profile; (c) density p'ofiie. (See Section 4 for

details.)

3. Electrohydrodynamics and Modulational Instability in Current Layer

It has been pointed out by Alfvrn and Carlquist (1967) that the necessary condition for
a sudden release of free-energy stored in a electromagnetic flow system is the requirement
that the average particle velocity should exceed the thermal speeds (i.e., v,, Ve> VT, VT).

In the laboratory case, when electric current exceeds some threshold the interruption
of the circuit will occur, a situation which can lead to an explosion that destroys the
equipment. As discussed in the previous section, there exists a strong electric current
in the resistive region (i.e., the flare current layer). This situation allos us to apply the
EHD (electrohydrodynamics) and modulation instability in this region for our investi-
gation.

In order to carry out this study, we must distinguish the difference between two
characteristic scales in relation to these two methods (i.e., MHD and modulation
instability). When A - 10 cm, r - I s, the resistive region could be described by means
of an MHD model because small angle collisions play a dominant role in this region.
On the other hand, when A - 10-2 cm, T - 10-8 s, the resistive region should be
considered as a collisionless plasma. Since vv,, e> vTi, vTe, the effect of collisions (or
thermal motion) can be neglected compared with the coherent action produced by
self-consistent fields (Boyd and Sanderson, 1969). Thus, Vlasov's equation should be
used in the resistive region, namely,

Of + v Of + F If , (16)

Ot Or m Ov
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where the force F = E + (1/c)v x B is produced by self-consistent fields. In such a case,
assuming a certain form (e.g., Maxwellian) of particle velocity distribution, the fluid
description is also meaningful (Boyd and Sanderson, 1969) by taking the first and
second moments of Equation (16). This procedure gives the conservation of momentum
and mass for electrons and ions, respectively, as

0%e ee Te kB v,(7
e+ (ve ' ) = e E - - (Ve x B) ye ne (17)

at me mec mene

avi  e e T kB+ (v " V)vi  = - E +- (v, x B) Vin,, (18)
at m, mic min,

+ 7 (here) = 0, (19)
at

an. + 7 (nvi) = 0; (20)

at

and the approximate energy equation for ions and electrons are

P,.e =  7. k T,.en,,e.

The self-consistent field quantities (i.e., E and B) ire given by Maxwell's equations

V. E = 47re(n, - e),

1 aB
V x E = -. . .

C a
(21)

1 aE 4rn
7 x B = I - + - e(n,v, - ne)

C at C
7 B = 0.

Under the flare conditions, there are accelerated ions having high speed (sound speed
c,, > (ky Te/m,) ,/2 _ 9.09 X 10' cm s - ') in the current layer, thus, v, > UT,. Since strong
Eoutsde exists, the electrons have velocity greater than 10' cm s - ', thus, these electrons
oscillate between groups of protons having high speed which may lead to fast fluctuation
of p rticle density. It is this fluctuation that produces very strong self-consistent fields.
In the meantime, it is necessary to distinguish the slow oscillation and slow time-scale
(co- ') from fast oscillation and fast time-scale (w , I). It is understood that electrons
can have both slow and fast time-sca!e but protons can only have slow time-scale. This
principle is needed to treat plasma turbulence and modulation instability (Hasegawa,
1975; Rudakov and Tsytovich, 1978; Li, 1985).

To analyze the set of Equations (17) through (21), we have assumed that the average
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of the fast component of a single quantity to be zero,

i = his ne i, + T ,

<n> =0,

<n, -n,>=O. or n,, =nes=n,

Ve = ve.s + Vf, < Vf > =0, (22)

Vt = V15 ,

E = E  J+ E, <E> =0,

B= B, <B >--.

Inserting Equation (22) into Equation (17), we obtain

- (V., + vf) + [(v , + v[)7] (v,.s + VT) 
=at V,+f

-e(E, + E) --- (v,, x BfT+ v x BfT)-
in e  ine¢

1 e 7(n, + ,r). (23)
mn n,?e ns

Averaging Equation (23) over many fast time-interval of cope, we find that

a (v.,) + (v,, 7)v, + < (vfT 7)vj>=
it

e E< - e KVf X B> _ ke 7n,, (24)
in e  nc men

Physically, Equation (24) represents slow motion under the slow time-scale and

me

represents the force produced by the fast oscillation of electrons. Subtracting
Equation (24) from Equation (23) gives the equation of fast component, v[ (see
Appendix A for details)

vJ . e " T,.k. (25)

at m, E ,,n

To obtain this cquatio,. the following conditions are used:

k,1k > I. W _ 1. W _ 10 - 2 (26)
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Obviously, the fast component magnetic field BJ is produced by the fast motion of
electrons vy. Using Equations (21) and (25), we found that

1 Of_=7Vx Efl= m e  ax (vf)
C at e kOt

Integrating the above equation we obtain

BfJ mec × (Vf). (27)
e

Then the force term becomes

-K(vJ.V) v> _e <v×XBf> = -!V<(V)2>,
meC

which is called the striction force (Rudakov et al.. 1978) or modulation force. Then
Equation (24) can be expressed by

V, + (Vs 7 ) . . .. E-n. , - k B _ ( T )2> . (28)

at me mens

As there is no slow component of B, Equation (18) gives

+ (vi" *7)vis = - Es 7n. (29)at mi  mins

Let us now examine Equations (28) and (29) to determine the conditions under which
ves = v,, and then modulation instability could occur. From Equation (25), it follows that

vf~ e Er = W,/2
f f = .

For strong turbulence, Wf,- 1, then ,jr - 3.69 x 10'cm s and E/'
1.77-177 statvolt cm - '. (These estimations are based on 7 = 1, 10 -'. no = 2 x10 0 - 11

at To = 10' K, respectively.)
From Equation (29), we may estimate the slow scale component of ion speed as

e W 1 /2  
M

If we take W, -0.01, then v,s.> 8.6 x 10' cm s E,E-,0. 19-19 statvolt cm
From these estimated values, it is obvious that expressions of Equations (28) and (29)
are compatible when 7 <(vf)2> and (-h-T,kB menj)n, have the same order of
magnitude as (elim,)E , if we choose the length scale .( = k - ') adequately.
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For example, if we take k being 102 and 10' (corresponding to compression factor
x being 1 and 10 -a, respectively), k < kd which satisfies Equation (26) immediately. The
values for other terms are:

V ((LI) 2> - k(3.7 x 107)2 _ 1.37 x 1017,

6eTekB Vns,- 4.54 x 1017,

mens

eE., - 9.81 x 1016.
me

In obtaining these results, we have chosen az = I and ye = 3 (for strong tubulence).
According to these estimations, we should be able to choose

vis = 'e.s = Vs (30)

By combining Equations (28) and (29), we get

+vs (v - (Te + Y, T) kB 7n, _ne 7 <(vf)2 > (31)

at mrns  2m,

Let us return to Equation (26) and set

ns =no +5n, with no =const. I n nI <no , 1
VT= Mr, t)e - ir o' + *(r, t) eilPo-,[ (32)

El= !E(r,t)e-wrpt + 1E *(r, t e"°-',

By aid of Equation (25), Equation (31) becomes

S' 7(n) e2

at .kB(e T, + ", T) n I E(r, t) 2, (33)at m0n 4mmelope

where i E(r, t) 2 E(r, t) E*(r, t) represents the square of the amplitude of the fast
oscillating electric field.

Observation of Equation (33) shows that the slow motion is controlled by the gradient
of density fluctuations and modulational force. Similarly, substitution of Equation (22)
into Equations (19) and (20) together with condition Equation (26) provides simplified
expressions for fast and slow components of particle density of the form

"T

cnf %div(nVr) = 0, (34)
at

an, + div(njv + <nvf>) = 0. (35)

at4
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Because njvS> Kn'vf>, Equation (35) becomes

-- + div(njv3) = 0.
(}t

Using Equation (32), we obtained,

a(bn)
- + no divv, = 0. (36)
at

By use of Equation (27), the induced magnetic field Bf could be estimated, such as,
BfJ- (mecle)kVf - 2 x 102_-2 x 104 G for i = 1-i0- 4, respectively. This condition
confirms our previous description that the self-consistent fields in the current layer are
much larger than those outside. These values can be summarized as

Er-~ 1.8-180, Eoutsid e -0.3 ;

Bf'- 104 , BOutsde - 10-50 G.

Since the fast oscillating electric field (ET) would propagate in the current layer, its
propagation equation under the condition of Equation (26) can be expressed by

7 x B - 4fre (nvf +nv, + nI vi - njvf>)
C 8, c

I 1OaE' 47re
C Ot C

Then

-c 2 7 x (7 x EJ) = c7 x =__ - 4ren, (37)
l 0t1 Ct

The term v[(8nJi t) has been ignored in Equation (37) because it is much smaller than
n,(aVf/ 8 t. Inserting Equation (25) into Equation (37), we obtain

__E +c2 41re2 n, Ef -Te kB 7(7 E') =0 (38)
+c-7x(7xEf)+ -i n•E=T

at2 me me

where - 4iren/ = 7. Ef (see Equation (21)). It could be noted that Equation (38)
represents the propagation equation for ET.

Substituting Equation (32) into Equation (38) and ignoring the term
.(8-E(r, t)/ct-)e "" (in comparison with the term: - 2iuor(E(r. t)/1)e - ..... ), we

obtain two equations to govern the fields E(r, t) and E *(r, t) with one being the conjugate
of the other. Thus. it is enough to write down one of the two as

-2iw+ : -7 x (7 x E(r, t))- ' B r 7(7.E(r,t) +
(t m,

61n
+ - W -,E(r. t) = 0. (39)
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Finally, we obtain a set of equations (i.e., Equations (33), (36), and (39); Li, 1985) for
the investigation of the modulation instability in the flare current layer; the first two
equations being the conservation laws of momentum and mass, and the third one is the
propagation equation for the electric ficid. According to Vedenov and Rudakov (1965),
the criterion for the occurrence of the modulation instability is W/nkB Te > (Ak)rd2 with

, 1. Vedenov and Rudakov (1965) state that, when this condition is attained, the
striction force (-1V <vf 2)>) removes both electrons and ions from the density
rarefaction. This leads to an increase of the 'lens effect', thus more Langmuir waves will
be trapped and the striction force increases. Subsequently, the modulation interactions
begin to develop, which confirms our analysis as stated above that, when the particle
velocities exceed their thermal speeds and the electrons have great drifting velocity (as
high as their thermal speeds), then the electrons will oscillate among a group of protons
thereby leading to enhancement of the striction force.

At the onset of a flare, the effective electric field within the current layer approximately
equals the electric field outside the current layer (Eoutsde): namely,

Ecffective = E+ - x B Eutside -- VinBoo " 0.33
c c

(where we took: vn -10' cm s -, B,,, - 500 G), and then an electron will gain a
veiocity of 107 cm s - I in a time-scale of cop-' (i.e., (e/me)EoutsdeCW,,) 6.3 x
106 cm s -I). In the meantime, both electrons and protons have group velocity near
106 cm s - 1. Therefore, under these two conditions (i.e., large driven current, j = cEou,.
sid. and large ion speed, the modulational instability will occur in the flare current layer.

4. Soliton and Strong Langmuir Turbulence

We have made a more detailed numerical study of our analysis as it is applied to the
Petschek model (as modified by Coppi and Friedland, 1971). We show that the plasma
flow is first pushed along the x-axis into the resistive region where it gradually changes
its direction and, finally, is expelled (withe the required energy conversion) along the
y-axis with an Alfvn speed of about 2 x 108 cm s- I. In the MHD region we choose

the parameters (consistent with the above analysis) as follows: L = 10 cm;
Bf= 500G; vf= 10 7cms-'; Tf= 104 K; nf= 2 x 10" cm- 3 ; = 105 cm. Hence,
x= x/2 and y* = 10 - (y/A). Near the x-axis, we take

B)= Bf(l - y' 4/80)[1 - (4x*)-]
t'x = - t [1I - (4x*) -'

Near the Y-axis. we take
BX = (Bf124) [1I + x'41/80] [1I - (4y*)I]

vy =24vj + (4y*)- '].
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In the diffusion region, we choose: T = 10' K; c. = 3 x 106 cm s'; As = D/cs =
2.4 x 104cm; D. = qjc/47r [10-9]; B = vfBf/c, = l0Bf/ 3 ; a = aV2 PfICs =

2.45 x 10-3 cm-3. We also use the following approximate representations:

B1. = t.2B(x/A,),

B,= 0.2(lOBf/3) (y/2.4 x 104),

-Cs (x/Z) [1 - 0.9(x/A,)]'- ,

v. = /2 c,(y/l) [ 1 - 1.2(y/2) 2 -'

and
p = (P) [I - 1.2(X/;") 2 _ 0.9(y/A,)2]

The results of our numerical experiment are shown in Figures 3 and 4 which show the
magnetic field, velocity, and density profile transitions. Figure 3 shows these transitions
along the x-axis (y = 0) as the plasma flows from the MHD region into the resistive
region toward the origin. Figure 4 shows the transitions along the y-axis (x = 0) as the
plasma [turns and] flows out of the resistive region back into the MHD region having
completed the flare energy conversion process from magnetic to kinetic and thermal
energies.

We have shown that the flow was first pushed along the x-axis into the resistive region,
gradually changed its direction, and finally was expelled along the 'v-axis with Alfv~n
speed being - 2 x 108 cm s - ' (see Figure 4(b)). The effective electric field exists only
in the z-direction. (Note, as in the MHD region, the effective electric field disappeared,

I

80 x=O

60

40

X
20 -

.. ..

0

I I I I I

1 10 102 1 10 106  10C
7  -0" 10 10

t O

y(cm)

Fig. 4a.

47



TURBULENCE IN SOLAR FLARES

I C7 I

EA

10,

10 0, 1, 1Ci 10 0 17 1P 1100

10

10'10 0

CM

10 *1

1 0 10 2 1 0 i 1 0 1 0 6 1 08 1 0 1010 C

y(cm)

Fig. 4b.

io48



11. T. SONG ET AL.

thus there is no particle acceleration along the z-axis.) Thus, in a short time (~ .- ,

electrons and protons will gain their velocities in Z-direction exceeding their thermal

speed. i.e.. v, > 10' cm s - ' and v, > 106 cm s - '. Therefore, this induced driven-current

would cause the modulation instability to occur along the Z-direction within the current

laver of the solar flare. Since there is only a weak field (high /-plasma), it is permissible

to treat this case as one-dimensional micro-instability problem. Thus. Equations (33).

(36). and (39) become

eV, _ B (y kVTe + y T1) a bn\ e- 2 8_ _ - I_ e_ - E(z,t), 2  (33a)
at m, z \n 0  4mim CZ

a (n) + av, =0 (36a)

at ',no a z

and
i E(z, t) .kB Te a2 E(z, t) (3n

-21 2ie 2 + - WE(z, t) = O. (39)

at me aZ no

In order to seek a solution for this set of equations, we make the following substi-

tutions:

t = oT, = o bn fi, E(z, t) = &oe ,

V, -? V:

with

to = ,) (m,/2me),,eT,(- Te + ,; T)-
ie t (40)

Vo Wp'(m,/i2mfl),eTe(7eTe + ',T)-' [(Te. + ",,,T)/m,]' -~

= (4m,/m,) (,e T, + 'i T) (-,, Te)- ,

r, 8[ 7tno0(tnem,)k (ie Te + -I, ) 2 (-.T,)- I V/2)
,

= (4m/m,)(,. Te + 7iTi)(eTe) -' [(-eTe + ',T)/m,]' 2

After some mathematical manipulation, the dimensionless forms of Equations (33a).

(36a), and (39a) become

v all L ( * (41)

On t' (42)

+ -- n .(43)
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After elimination of v from Equations (41) and (42), we obtain

2 n a2n =2(S*)

OT2  a 2 a 2

By observation, we realize that Equation (44) is the traveling wave equation; thus, the
real quantities n and W&* could be represented by a functional form of ( - u0 z) with
uo being the travelling wave group velocity. Thus, Equation (44) has a simple special
solution as

68* 1 0 I-U2 (45)

where uo can be considered as an undetermined integration constant. Inserting
Equation (45) into Equation (43) we obtain a nonlinear equation for dimensionless
electric field s:

-+ - + (1 - uo)-' (ss*)5 =0 (46)

where u. < 1, Equation (46) has a soliton solution (Li, 1985) of the form

S=- cosh 1 T) [2(1 I- 1/ )lU)-
x exp[ - i(u0/2) ( - u0 r) - i X x

x exp liT P,/2) (1 -u )-t 2 (47)

where and p are integration constants. Physically v represents dimensionless
amplitude of fast oscillating electrical field, the initial phase. The term
(C1./2) (1 - u2) ' + (uo/2)2 = c stands for dimensionless frequency shift, that is, the
frequency of fast oscillation being cop -~ 'ro-6. From Equation (45), the density
fluctuation could be found as

7= sech 2{( - uo) [ ,/2(1 - U)]1 2} (48)

-

By examination of Equations (42) and (48), we found a solution for v, such as,

v - U sech 2 ( - uo,) [1/2(1 ug)]0/2 } (49)
1 - u
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Before determining the parameters , and uo, we shall calculate the three conservation
quantities (Rudakov and Tsytovich, 1978) as follows:

N= { ss * d ,

H f{[~ - + nss + (n 2 + V2 )/2I dc, (50)

SO

!P= f i (8 8- + 2no d .
2 -'Do I

Inserting Equations (47) through (49) into Equation (50) yields

N = 2[2r,(l -12)]11 2  (51)

H = - 2(1 -5u2) (1 - 11)- 312 + (,/2)I/2 U2(l 1 2) 1 (52)

P- "iC u0(l - u2 ) 31 + 2 u0 (l -U 2) - ' ,2  (53)

N, H, and P represent the number of Langmuir quanta, energy, and momentum of this
soliton, respectively. Of all these the most important quantity is energy H which has to
be negative if the soliton is stable. Like an atom in which electrons are trapped around
the nucleus, it is just the negative energy which can trap particles within a soliton. From
Equation (52), this soliton stability condition becomes

1
1-5u2>0 or uo<-I= (54),/5

if , > 1 (corresponding to strong micro-turbulence). Using Equation (40) and
WIT- 0.9 (or E.T' - 1.77, % = 1), we can estimate , as

C1 _ (El) 64nn ( e kB(7eTe + T, r) 2 (7T)-, ,T"

-(, [64(me,1n)]- '(0.9) - 25.88.

In view of this result, it is reasonable to choosc : 1 5, uo = 0.2. Determinatiun of
these two parameters will enable us to calculate the structure of this soliton. Thus; the
propagation velocity of the soliton is given by

U0 r u[(7eTe + ,,;T,)/J,' 2 = 0.2 (sound speed)-- 2 x 101 cm s
To
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The dimension of this soliton is

2[2(l - u61 _ ] .9Z ro 2 Cp ( -) -2 pe

-1.01 x 10-2 cm - 10 Debye radius.

The density fluctuation within the soliton is

n_ __= 25 4me /eTe+ ,,0. 1 1 .

no  1-Uo 0.96 m, 'IeTe

From these results, we note that only 10% density fluctuation within an area of a
10- 2 cm sized box could produce strong Langmuir turbulence (soliton) whose energy
density of the electric field reaches a magnitude comparable to the order of the value
of thermal energy density. It could be imaginable that there might be a much severe and
violent phenomenon if, somewhere, a local vacuum really occurred!

From the conservation laws (i.e., Equations (51) through (53)), it could be noted that,
when uo o 1, N , and - H 1 ./2. This means that increasing uo diminishes the
absolute value of the negative energy of the soliton. Thus, the solitons tend to fuse with
each other and to be brought to rest independently of one another. In the case of the
fusion of two identical solitous havileg cqual energy Ho, quanta numbers N.V and
amplitude (v, T-1)0, the characteristics of the soliton after the completion of the fusion
process will be:

N1 = 2N, ( =  o2( T

and

HI = - [2(V/T)o1 3 (1 - 5U2) (1 -) - 3/ 2 = 8H/o.30

These results indicate that the soliton has gone through a transition process from a
higher energy state to a lower energy state. Hence, AH = 2H o - HI = - 6Ho > 0. This
amount of energy can be converted into ion-sonic wave energy as has been demonstrated
by numerical computations (Degtyarev et al., 1976). These authors showed that the
fusion of solitons is accomplished by ion-sonic emission. Those solitons with < 1
do not fuse, and only those solitons with / > 1 are able to fuse. They have been able
to show that the rate of fusion is proportional to -/,.

5. Concluding Remarks

In this paper, we have presented a detailed account of micro-physical processes which
may enhance significantly the intensity of the flares over the level predicted by the
classical flare theory. These micro-physical processes are the soliton and strong
Langmuir turbulence. Overall, we may summarize as follows: when the condition for
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modulational instability is reached, three modes of turbulence may occur. These three
modes (soliton, free Langmuir waves, and ion-sound waves) will interact with each

other, each one being converted to the others (Rudakov and Tsytovich, 1978). It could
be noticed further that Langmuir waves can be trapped in solitons and that the energy
released during the fusion of solitons is essentially taken up by ion-sound waves with

only a negligible part of this energy being carried by free Langmuir waves (i.e., not
trapped in solitons). Apart from the fusion of two identical solitons with the emission
of ion-sound waves, there is a process in which ion-sound waves generated during the
fusion of two solitons could destroy the third soliton. Also, a single soliton can be formed
from a homogeneous Langmuir field accompanied by ion-sound emission which is
called soliton condensation (Rudakov and Tsytovich, 1978.). From all these theoretical
results, we may conclude that during the onset of a flare, when the converging particle
velocity reaches - 10' cm s - ', the modulational instability begins to grow, and a set

of solitons could be formed from the thermal Langmuir field. At the same time, the
ion-sound turbulence increases rapidly to a high level comparable with the thermal
energy density; WT. nkB T. Because of creation of such strong turbulence, the resistivity
(a- ') becomes 4-5 orders of magnitude larger than the classical value. It is just this

large resistivity which leads to an efficient conversion process in which an adequate part
of the magnetic energy is converted to thermal energy, thereby illustrating the thermal

phase of the flare.
In the classical flare model, the diffusion region is unrealistically small thereby making

it very difficult to have magnetic energy converted to thermal energy. However, the
present model with finite size of the diffusion region (0.1 km x 102 km) plays a dual or

twofold utilitarian role; on the one hand, greater resistivity enhances the temperature
and, subsequently, enlarges the dimension of the diffusion region. Hence the efficiency
of the energy conversion will be enhanced. On the other hand, strong turbulent electric
field could accelerate particles stochastically. It has been pointed out by Sturrock (1975)

that, in the first phase of the solar flare acceleration process, one of the most favourable
mechanisms is stochastic acceleration with an RF electric field produced by plasma
micro-instability. Since there is a diffusion region in the present model which leads to
a much more efficient energy conversion process which also produces a high speed jet,
there is to need to demand the existence of slow shocks as required by Petschek's
model.
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Appendix A

First we will prove that the inequality

t or C , (A1)
atI> I t j r -Iaiv

is valid under the condition (26). The right-hand side of Equation (29) has the same
order of magnitude. so we can estimate v, as

-,_e e m2

- E,, or v,- -.
ot m, MnO)P

Similarly, we can estimate vr from Equations (23)-(24)

-~,.~Ef or T er
at n1 me Ope

Then

/~ a L /
- - Irt Wi

lax I k

-- [W(melmi) ] - 1/2

atilax, k

If we estimate v, from (24)

a v e e E s =s , / 2
---- e-E3  for vs- - = Ws1  .
Ot me m m opi

Then

Therefore, /) k,1,[W m[ l -/2

Therefore, in order to satisfy (Al), it is enough to take

kd/d > I, Wf_ I, W, _- 10-2

which is just the condition (26).
Inserting (22) into (19) gives

- tn, + nf) + 7 [(ns + nf)(v + vf)] = 0. (A2)

After averaging over the time-period o,- I we obtain

an,
-+ 7"(nj + nfvf>) = 0. (A3)
at
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Subtracting (A3) from (A2) gives

a nj -+ 7 (n, vf + n/Tv, + fjvf - < nTvT (A4)
at

Considering (Al) we can write

anf .nTf
f+ V n )= 0. (A5)

atf
Now, we simplify the representation of avf/lat. Subtracting (24) from (23) gives

GjfL + (V. V)V T + (VT. V)V5 + (V,. V)Vf < K(Vf V)VfT>=

Me Mec

j, ekB Te 7n .(A6)

Men.

Comparing the three terms - (e/rrnec) (vfT x BJl), - (e/MeC)Vj x B., - "Vfl) X
<vfT x BfT> with - (e/me)EJT and using Maxwell's equation V x E/ = c I '(aBfJlo'),
we can estimate them as:

e ' (I m ' xpe)eEf /2 Te =kWl/
mec I e kd

Similarly, the terms on the left-hand side of Equation (A6) compared with OVjlat can
be proved to be very small, using Equation (Al).

Thus (A6) reduces to

avfT e EfT _ le T,?kB n

at m me ns
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Abstract. In this paper % e investigate the effects of concensation and thernmal conduction on the formation
of Kippenhahn-Schliiter (K-S) type prominences in quiet regions (QP) due to symmetric mass injection.
To implement this investigation, a self-consistent, two-dimensional, non-planar, time-dependent magneto-
hydrodynamic (MHD) simulation model is developed. In the model, we use various values of the injection
velocity, density, and magnetic field strength to determine the most favorable conditions for the QP
formation. Based on these simulation results, we find that the formation of a K-S-type field configuration
shculd be considered as a dynamic process, which needs both condensation and mass injection to supply
enoiigh miss to maintain such a configuration to complete the formation process of quiescent prominence

1. Introduction

For decades, the formation of quiescent solar prominences has interested solar
physicists, and many physical mechanisms for the formation have been advanced. For
example, the formation of quiescent prominences by condensation from the surrounding
coronal material has been investigated by a number of authors (Lust and Zirin. 1960:
Field. 1965: Kuperus and Tandberg-Hanssen. 1967: Nakagawa. 1970: Raadu and
Kuperus. 1973; Hildner. 1974). Such a condensation is expected to o,.cur because the
coronal plasma is in a radiatively unstable temperature regime (Parker. 1953: Cox and
Tucker. 1969: An et al.. 1983). When a density perturbation causes radiative cooling to
dominate in some region. the resultant net cooling decreases the temperature and
pressure in the perturbed region and causes material inflow to form cool dense plasma
material.

To date, most calculations of solar prominence formation, based on the assumption
Of coronal condensation. have onlx utilized linear or ciuasi-linear mathematical models
(Kleczek. 1958: Uchida. 1963: Raiu. 1968). Some models utilized self-consistent non-
linear magnetohydrodynamic models. but they dealt with ker. specific cases. Hlildner
( 1974) employed the most sophisticated numerical N H D model at that time and showed
that the local condensation is the key process for the solar prominence formation b\
adopting a parallel field configuration and ignoring thermal conduction. Lo% and Wu
(1981) studied analyticallv the nonlinear interpla. between magnetostatic equilibrium

),dar Phi w(% 125: 27---29.. 19910
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and energy balance and showed that the thermal conduction parallel to the field is

important for the energy balance in the Kippenhahn-Schllter (K-S) type prominence
sheet. The condensation of a coronal plasma may explain the origin of the cool dense

prominence material, but it still leaves a number of unsanswered questions; e.g., what
is the mechanism of prominence support? Why does a prominence form along only a
certain part of a neutral line'? Furthermore, Saito and Tandberg-Hanssen (1973) showed

observationally that condensation of coronal mass alone cannot supply enough mass
for a prominence without collapsing a large part of the corona. The requirement for
continuous mass supply from the chromosphere to a prominence led Pikel'ner (1969)

to suggest a siphon mechanism for the prominence formation. Poland and Mariska
(1986) studied the siphon mechanism for supplying mass in the prominence formation

process using a one-dimensional flux tube model in which thermal conduction and
radiation are included, but the effects from the magnetic field configuration and the

MHD process on the condensation could not be accommodated properly. Recently, An,

Bao, and Wu (1988) and An et al. (1988) employed a self-consistent time-dependent
ideal MHD model (Wu et al., 1983) to study the prominence formation by mass
injection. They revealed the dynamic processes in the formation of the prominence field
configuration, but the plasma parameters (i.e., density and temperature) could not

match the observed values because of the limitation of the ideal MHD model without
condensation and thermal conduction. In this paper, we shall present a two-
dimensional, non-planar, time-dependent, self-consistant compressible magnetohydro-

dynamic model together with radiative cooling and thermal conduction in a gravitational
field to investigate the roles of condensation and thermal conduction in the prominence
formation. We discuss the present model and the initial and boundary conditions used
for solving the model equations in Section 2. Numerical results obtained from the model
and physical interpretations will be included in Section 3. Finally, concluding remarks
concerning the model in both a mathematical and physical sense will be given in

Section 4.

2. Description of the Model

In genera!, to set up a simulation model for a physical system we need to consider four

parts: (i) mathematical description of the physical system of interest. (ii) appropriate
computational boundary conditions corresponding to the physical system to be investi-
gated. (iii) proper algorithm to execute the numerical computation. and (iv) the choice

of the initial geometric configuration and proper interpretation of the numerical output.

2.1. NI.,AHIENiI1. L I)-S(RiIPI ION

To consider the dvnanical behavior of the prominence formation. we choose to use the

description of single fluid plasma theor . in wkhich the theory of magnetohydrodynamics
can be utilized. It is believed that the basic physics in the prominence formation is the

interaction bctwcen the plas.ma and the magnetic field in a gravitational field i ith higher

order transport effects (i e.. radiation and thermal conduction). Thus. we consider a
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compressible fluid (plasma). initially at rest, imbedded in stratified solar atmosphere
with an arbitrary potentuai magnetic fieWk. I:n addition. %%e is assume that the plasma

is optically thin so that it is cooled by radiation in which condensation may be formed.
The plasma is heated by absorption of mechanical energy: thermal conduction is
included. However, the electric conductivity of the plasma is taken to be infinite and
viscosity is set equal to zero.

The governing equations of this MHD model can be written as:

- + V.(pv) = 0, (1)
Ct

+ 7. (pvv) =-p + -J x B + pg, (2)
at C

-C (Vv -v Vp + (;-1) [H - QR - Qj.,(3

aB
-=7 x (v x B). (4)

p=pR7, J= 7c7xB, 7.B= 0, (5)
41r

where the symbols p, p, T, v, B. and g are the mass density k. = inn), pressure,
temperature, velocity, magnetic field, and gravitational acceleration. respectively. All
these quantities are space- and time-dependent except the gravitational acceleration. In
addition. J represents the electric current which is defined by Equation (5). The two
constants ; and R are the ratio of specific heat and the universal gas constant. The
independent variables are the spatial coordinates (i.e.. honzontal (x) and vertical ()
coordinates) and time (,).

For the closure of the problem. there are three more quantities to be defined: viz., Q,

QR, and H. Q, represents heat conduction. The heat contauction parallel to magnetic
field is much larger than the heat conduction perpendicular to the magznetic field for the
magnetized prominence plasma. thus

Q, 7 -(k 7 T). (6)

with k,, = kT 2 erg K cm ' S and k,, being i0' :n cgs units.
The quantitx QR represents the radiative cooling term .%hich is chosen to have the

forin

QR= 1 n T . (7)

%here n, is the electron number densitt In the present app-oximation. it is niply equal
to pm where in is the hydrogen mass. The constants /, and .7, define the temperature
dependence Minch is identical to the one used h% Il iidner 1974) based on the optical
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thin approximation given by Cox and Tucker (1969). The heating function, H. is not as
well knoxn as the cooling function. Thus, ,c simpl. choose a heating function of the

following form:

Ht) = QR,, = Zp'TO (8)

This choice assures us that in the initial atmosphere there is a balance between heating

and radiative cooling at each point.

2.2. BOUNDARY CONDITIONS

It has been pointed out by Wu and Wang (1987) that the selection of appropriate

boundary conditions is crucial for the correctness of the physical solutions. Thus, in this

simulation study, self-consistently posed boundary conditions were used, based on

projected normal characteristic boundary conditions (see Hu and Wu, 1984; Wu and
Wang, 1987). The procedures can be summarized as follows:

(i) All the characteristic equations are taken along the projected characteristics in the

n - t plane. where n is normal to the boundary in question. In particular, those charac-

teristic equations along the outgoing projected characteristics for which the correspond-
ing characteristic velocity is pointing out of the calculation domain are identified with

the compatibility equations (Hu and Wu, 1984).
(ii) For the lower physical boundary (as shown in Figure 1) used in the present

calculation, the maximum number of boundary conditions can be arbitrarily specified
to simulate the boundary disturbances. This number is equal to the number of incoming

characteristics which are those characteristic velocities pointing into the calculation

domain. Then. the given boundary conditions and the compatibility equations are

combined into a complete system to determine the values of all the dependent variables
on the boundary.

zt

0 X

r~g. I Schematic representation of an initial potential magnetic field with symmetric mass injection as
indicated b% arroxs and computational domain for the present study.
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(iii) For the computational boundaries. i.e.. the upper boundary and side boundaries
in the present study, we choose again according to the rules given b, Wu and Wan2
(1987). At the upper boundary, the non-reflecting boundary conditions are used: namely.
all the spatial derivatives of the dependent variables in the characteristic equations are
taken to be zero except those in the compatibility equations. Then, these non-reflecting
boundary conditions are combined with the compatibility equations to determine the
boundary values of the dependent variables. The side boundaries, as shown in Figure 1.
have been chosen to be symmetric for mathematical convenience and physical accepta-
bility.

2.3. NUMERICAL ALGORITHM

The algorithm used for this numerical simulation is the FICE (Full-Implicit-
Continuous-Eulerian) scheme developed by Hu and Wu (1984). In the FICE scheme.
all the quantities excent the density (p), pressure, (p). and velocity (v) are computed
explicitly through the values obtained at tie immediate previous iteration step. Then.
these values are substituted into the pressure equation for the routing iteration until the
satisfactory results are reached. The detailed description of this scheme can be found
in the work of Hu and Wu (1984).

2.4. INITIAL CONDITIONS

Prior to the introduction of the disturbances at the lower boundary (i.e.. physical
boundary), the initial solar atmosphere is supposed to be in hydrostatic equilibrium with
a uniform temperature and is permeated by a potential magnetic field (i.e., 7 x B = 0).

Under these physical conditions, the analytic conditions can be found from the set
of governing equations (1) through (5) in two dimensions which have the following form:

Se - 0! RT):

To T,.

v, = 0.

7EX

B, = B cos -- e ( 9)
2x0,

xx
B:, = B, sin .... e

2X0

%%herc p. . and B arc arbitrarv constant, of dcnsit. tempcratire. and magnetic field,
rcspectl\ l\. This initial magnetic field contiuration and computational domain are
shown in Fi(gure 1.

In order to simulate the mass injection. %e have prescribed a velocit. along the field
lines in three grid points (see Figure 1) ,\ ith a time ramp of five time steps. Subsequentt.
we have maintained this prescribed condition througizhout the c-alculation.
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3. Results

It is understood that the physical parameters which have significant effects on the
simulation results are the initial plasma beta (i.e., the ratio of plasma pressure to
magnetic pressure, fo = 16rnokTJ 1B2), the injection velocity (vo), and amount of mass
(PiPo) injected into the system. Therefore, our calculations were performed for different
combinations of these parameters to study the role of condensation and thermal
conduction on the prominence formation processes due to mass injection as shown in
Figure 2.

All these calculations are based on an initial isothermal atmosphere in hydrostatic
equilibrium with a temperature of 106 K (i.e., T), a number density at the lower
boundary of 5 x l09 cm - 3 (i.e., p, ), and with a dipole current-free magnetic field.
From these numerical experiments, we conclude that the best results for prominence
formation occur for the following physical parameters: f7o = 2 (i.e., B" = 4.2 g),
p Po = 1.0. and t, = 10 km s - ', i.e.. point A in Figure 2. These results for magnetic field
configuration. density contours, temperature contours, and velocity field at a time 6200 s
after the initiation of the mass injection as shown in Figure 1 are presented in Figure 3.
These results clearly indicate that a K-S quiescent prominence is formed; the magnetic
field configuration shows a pit above the neutral line where a high density (i.e., 12.5 times
hipher than the original density) and cool (-,90,O lower thav the or-inal ternperature)

[0

PaP

/o //1 to1
Pa13oo 1 2.//

/I
/

V =o 1 0 ,

= 10km/s v= 20 km/s v)- 30 km/s

Fi..: 2 Hree-.ixes )".A ,) re pre sentation of thc ph% sical parameters f'or wkhich nimericaI simulIations
%%ere performed.
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material is formed. The cool dense material is formed by the condensation of surround-
ing coronal plasma as well as the injected plasma as exhibited in the velocity field: as
the injected plasma starts to condense in the pit, the pressure deficit in the pit causes
the coronal plasma to flow into the pit and condense.

In order to show the role of radiation and thermal conduction in the dynamical
formation of the quiescent prominence we plot the density and temperature at the pit
as shown in Figure 3 as a function of time for various combinations of radiation and
thermal conduction; see Figure 4. The curves represented by A, B, C, and D are,
respectively, the computed results for MHD with no thermal conduction or radiation.
with thermal conduction only, (i.e., [H - QR]o = 0) with radiation only, and with both
radiation and thermal conduction as noted in the caption of Figure 4. By comparison
of curve B with A, we note that the heat conduction tries to smooth the temperature and
density profiles along the field lines, resulting in a lower density accumulation and lower
temperature drop in the pit than for the ideal MHD case. For both cases, the density
and temperature evolution are far from those of a prominence. If the radiation is
included in the model, the density and temperature are closer to those observed in a
prominence; density enhances more than 10 times (- 10k' cm - 3) and temperatures

decreases - 100% over the initial value (- 10' K) in the pit. Again by comparing the
results of C and D, we find that heat conduction smooths the density and temperature
distribution along the field lines. According to these simulation results. there are no
doubts that radiation and thermal conduction have important roles in the formation of
prominence. In particular, the radiation is essential to induce the condensation, and
thermal conduction will modify the time-scale of the formation. We now may have a
general scenario of the formation of quiescent prominences based on mass injection
from the boundary with radiation and thermal conduction in our model. In the following
we shall describe some detailed physics which may be revealed from this simulation
study.

3.1. EFFECTS OF DIFFERENT INITIAL PLASMA BETA (16 nnokTo,'Bo)

The plasma beta measures the relative importance of processes controlled by plasma
pressure and processes controlled by magnetic pressure. During the prominence for-
mation process with a fixed plasma pressure (i.e.. n,, - 5 x 10' cm - ' and 106 K) at the
lower boundary. it is necessary to have a proper magnetic field strength. in order for
a K-S-t.pe quiescent prominence to form. If the field is too strong, the field lines cannot
bend enough to form a proper pit to hold the mass Leing injected, and the injected mass
will fall back to the solar surface b% gravitational pull. In that case a pit is not formed
at the apex: instead a loop is created. If the field i,, too wear,. it does not have enough
strength to support the prominence material at the apex. Only for a proper value of field
,trength will the K-S-type prominence form. After a number of simulation studies, %e
present the field configurations and density contours with values of the plasma beta of
2.0 (4.2 G), 1.0 (5.9 G), and 0 7 (7.0 G) for the case of an injected mass velocity of
10 kml s ' and pp', 1.0 using the non-ideal MHD model in Figure 5. From these
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demonstrate that the formation process is sensitive to these parameters. we have shown
the effects of the plasma beta vaiuc in the previous scaton. Now, we investigate the role
of the p( 'rbed density ratio and the magnitude of the injection velocity (v0).

Figure 6 shows the magnetic field configuration, density contours, temperature
contours, and vectoral representation of the velocity field at 6200 s for flo = 2.0 and
Vo 10 km s - ', with a perturbed density of 1.0 on the left (a) and 1.2 on the right (b).
It is immediately clear from these results that the case with p/p0 = 1.2 does not lead to

.KStpe prominence. but exhibits a non-uniform loop structure as shown on the right
side of Figure 6. This loop structure has high density at both legs and low density at
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the top. Observationally, it may reflect a loop having bright legs and less bright top.
Physically, it may be understood because we have injected more (20%0 more than th?
case shown on the left side of Figure 6) mass into the system. and because of the effect
of gravity on the condensation already triggered before the injected mass reaches the
apex as shown by the velocity field in Figure 6.

In Figure 7. we show the effect of the injection velocity on tlie formation process.
Again, the best physical parameters for K-S-type prominence formation are/fo = 2.0,
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p~o- 1.0, and v0 = 10 km s -'The density contours and vectoral representation of the
velocity distribution are shown in Figure 7. From these results, we recognize the effects

of the injection velocity by comparing the results shown in case (b) and case (c) in

Figure 7. where only the density enhancement in the low injection velocity case (i.e.,

r= 10 km s - ') resembles the observed prominence features. It could be noticed further

by comparison of Figures 7(c) and 7(d) that if the initial field strength increases (i.e.,

ft0 decreases), the observed feature of prominence density distribution fails to appear.
Another important feature which could be seen by comparison of Figures 7(a) and 7(c)

is the injection density which shows that when we increase 20'/' of the injection density,

it forms a loop instead of prominence.
To summarize the present simulation studies, we show that the best combination of

physical parameters for a K-S-type prominence formation is fl = 2.0 (i.e., 4.5 G),
p/p0 = 1.0, and vo0  10 km s - 1, with condensation and thermal conduction processes
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Fig 8 Comparison between the results of magnetic field. density, and pressure contours obtained from
the ideal MHD model (left) and non-ideal MHD model (right) at 6200 s after mass injection for A,1 = 2.0.

pp(= 1 0. a nd V, 10 km s
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in the model (i.e.. non-ideal MHD model). As discussed by An. Bao. and Wu (1988)
and An et al. (1988) a K-S magnetic field configuration cmn be formed without con-
densation and thermal conduction. However, the resulting dersity contours do not
resemble observations. These results for magnetic field configuration. density contours,
and pressure contours are shown in Figure 8 for models with and without radiation and
conduction.

Finally, we present the evolution of the vectoral representation of the velocity distribu-
tion and pressure distribution at various times (i.e., 2000, 5800, and 6200 s) in Figure 9.
From these results we noted two important features:

(i) The development of a low pressure region on top of the apex as shown in
Figure 9(0 may correspond to the cavity generally observed above prominences. Also,
we can understand the cause of the cavity as due to the condensation (see Figure 9(c)

because there is no locality. We may notice further that this low pressure region is

created b both density depletion ( 2", Figure 5(b)) and decreasng tenerature
i - 91 ",;, Figure 6).

(ii) The support of the prominence mass is due not only to the magnetic field but it
also results from the momentum due to the injected mass as indicated by the high
pressure contours on the lower boundary in Figure 9(d-f).

4. Discussion and Coricluding Remarks

In comparison to previous studies of prominence formation, the present work incor-
porates the nonlinear dynamical effects of the magnetohydrodynamics together with
condensation and thermal conduction in a fully self-consistent treatment. In order to
sort out these complicated physical processes. it would be useful to estimate the
characteristic time-scale for each of the physical processes. Employing dimensional
analysis for the momentum and energy equations (i.e., Equations (2) and (3)), we obtain
the following characteristic time-scales-

Hydrodynamic time-scale,

1P = [ ] ] 'V 'O ,

LR T,) c,

magnetohydrodynamic (MHD) time-scale.

B24"= lpf)X0 IT

conduuon time-scale.

( - l)Qo ( - l)kT' 2

radiation time-scale.

7 -I)QR i "" 'T7
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condensation time-scale.

tRtc
t eds =

tR - t-

where c, is the sonic speed, CA is the Alfrn speed. and the subscript 0 represents the
reference value. In Table I, we present the results for these characteristic times for
various initial conditions. Only the magnetohydrodynamic time-scale is affected by the
plasma beta through the Alfvrn time scale. The other time-scales are functions of plasma
properties and geometric length. These characteristic time-scales have important effects
on the determination of simulation time to assure meaningful physics and the under-

TABLE I

Characteristic time-scales with an initial atmosphere characterized
by T = 10 6 K. Po = 8.35 x 10 -1 gCM -3, 1, = 2 x 10ikm

10 0.7 1.0 2.0

1p 170s 170s 170s
t 92s 1I0s 156s
t, 8000 s
:'t 3200 s
tcds 5400 s

standing of the sequence of the physical processes. For example, we note from Figure 4
that the density increases and the temperature decreases significantly after 3000 s for
the case where radiation is included. For the case of both radiation and thermal
conduction, the density increases and the temperature decreases significantly beginning
at - 5000 s. These two times correspond to our theoretically predicted radiation time
scale and condensation time scale, respectively, which implies that our numerical
simulation experiments behave properly. There are not any analytic results with which
to compare our simulation, but the agreements with the above-mentioned time-scales
may be considered to be an indication that the numerical results reflect correct physical
situations.

We now estimate the amount of mass being accumulated in the 'pit' and examine the
distribution between the injection mass and condensed mass. The total mass in the
prominence can be obtained by numerically integrating the density distribution over the
area which is considered to be the prominence (i.e., the pit). We find the total mass to
be 6.4 x 102 g cm - I. Tne amount of mass which is injected into the computational
domain is 1.2 x 103 gcm -I. However, not all of the mass can reach the pit which we
identify with the prominence material. If we assume that only one-third of this injected
mass reaches the pit, the amount of injected mass which can be considered as promi-
nence mass is 4 x 102 g cm - 1. Taking the difference between the total prominence mass
and the injected prominence mass to be the condensed mass from the corona, we find
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that the latter is 2.4 x 102 g cm . Because this is a two-dimensional model. the third
dimension is arbitrary. If we take the length of the prominence to be 10 ki, then the
total mass in this simulated prominence is 6.4 x 102 a of which 37.5°( is comig from
the coronal condensation and the rest (62.5 %o) is contributed by the injected mass from
below. This scenario may resolve a classical problem in prominence formation as
pointed by Saito and Tandberg-Hanssen (1973); i.e., with the mass injection present.
the formation of prominence will not depend on the collapse of a very large part of the
corona.

In summary. we have presented a self-consistent numerial simulation model for the
understanding of the prominence formation process due to mass injection from the
chromosphere. This model is based on a two-dimensional, time-dependent magneto-
hydrodynamic theory with inclusion of radiation and thermal conduction effects. Based
on the results from this simulation model, we conclude that

(i) There is a unique combination of plasma beta. injection density. and velocity in
which a K-S-type prominence may form at the neutral line. This might expiain why
there is no prominence at every neutral line.

(ii) The mass injection does not supply ihe entire prominence mass but triggers a
condensation of coronal mass to further supply the prominence mass.

(iii) The prominence mass is not only supported by the magnetic field but also by an
increase in the pressure gradient (see Figure 9) through the dynamic process of mass
injection. This may be considered ballistic support.

(iv) The combination of a high injection 'velocity and density with a small plasma beta
is an unfavorable situation for the prominence formation. Instead, we see the formation
of loops.

(v) The formation of cool prominence mass is due to radiation. and the thermal
conduction smooths the temperature distribution of the prominence along the field lines.

(vi) The cavity formation may be considered as a dynamical process which happens
because the surrounding coronal mass is condensed to the pit and there is not enough
time for mass to be supplied to replace the condensed mass as demonstrated in Figures
5(b) and 9(c).

(vii) Finally. we should note that the siphon effect is another mechanism %N hich could

get the mass into the pit because the creation of the cavity leads to an additional pressure
gra&ent. However, this effect is small in comparison to the condensation and mass
injection processes. since, the gravitational effect will enhance the process of condensed
mass falling into the pit. but it will curtail the siphon mass from getting into it.

We conclude that this numerical simulation stud.' reveals situations that resemble
owerall characteristics of" a K-S-t\ pc promincncc as concern field configuration. cool
mass, and coronal cavity.

\cknowledgements

We acknowledge Ronald L. Moore for reading the manuscript ann giving us valuable
suggestions. The work done b-, STW and JJB was partially supported by NASA Grant

72



PROMINENCE FORMArnON. CONDENSA nON A\ND THERMA~L CONiDUCTION

NAGW-9. The work done by CHA and STW was also partially supported by
AFSOR-88-OO 13.

References

An, C.-H.. Bao, J. J., and Wu, S. T:~ 1988, Solar Ph vs. 115. 8 1.
Ann. C.-H., Canfield. R. C., Fisher, G. H., and McClymont, A. N.: 1983, Astroph vs. J. 267. 42 1.
Ann. C.-H.. Bao, J. J., Wu, S. T., and Suess, S. T.-: 1988, Solar Phvs. 115. 93.
Cox, D. P. and Tucker, W. H.: 1969, Astrophys. J. 157. 1157.
Field, 0. B.: 1965, Astrophvs. J. 14?. 53 1.
Hildner. E: 1974, Solar Ph 's. 35. 123.
Hu. Y. Q and Wu, S. T.: 1984, J. Comp. Pkvs. 55(1), 33.
Kleczek. J 1958, Bull. ,lstron. Inst. Czech. 9. 115.
Kuperus. M. and Tandberg-Hanssen, E.: 1967. Solar PhYs. 2. 39.
Low, B. C. and Wu, S. T., 198 1, Astrophys. J. 248. 335.
Lust. R. and Zirin, H.: 1960, Z. Astroph vs. J. 49. 8.
Nakaeaxva. Y - 1970. Solar Phvs. 12. 419.
Parker. E.. 1 .,53, Astrophvs. J1. 117. 431.
Pikel'ner. S. B.: 1969, Soviet Astron. - AJ 13. 259.
Poland. A. 1. and Mariska. I T.: 1986, Solar Phvs. 104. 303.
Raadu. IM. A. and Kuperus, M.: 1973, Solar PhYs. 28. 77
Raju. P. K.: 1968, MonthlY Notices RoYv. Astron. Soc. 138, 479.
Saito. K. and Tandberg-Hanssen, E.: 1973. Solar Phs. 31, 105.
Uchida. Y.: 1963, PubI. Astron. Soc. Japan 15, 376.
Wu, S. T. and Wang, I F.: 1987. Compt. idath. 'Ippl IMech. Enggi. 64, 267.
Wu. S. T.. Hu. Y. Q.. Nakagawa. Y, and Tandberg-Hanssen. E.. 1983, Astrophys. J. 266. 866.

73



III. MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR ATMOSPHERE

It has been suggested that the coronal heating and solar wind

acceleration may be related to the MHD waves in the solar atmosphere. Either

to prove or to disprove these suggested concepts we have made a systematic

study on the propagating, reflecting and trapping of MHD waves in the solar

atmosphere. The results we obtained are not conclusive. Three papers. were

published in the Astrophysical Journal to report these resutls:

Magnetohydrodynamic Instabilities in Coronal Arcade in
Astrophys. J., Vol. 337, 989-1002, 1989.

Propagating and Non-propagating Compression Waves in an
Isothermal Atmosphere with Uniform Horizontal Magnetic

Feild in Astrophys. J., Vol. 344, 478-493, 1989.

Reflection and Trapping of Transient Alfven Waves
Propagating in an Isothermal Atmosphere with Constant
Gravity and Uniform Magnetic Field in Astrophys. J.,
Vol. 345, 597-605, 1989.
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ABSTRACT

We have studied the MHD stability of coronal arcades with and without a detached flux tube using a
two-dimensional linear MHD stability numerical model. For the study, we computed two-dimensional magne-
tohydrostatic equilibria with and without gravity. We have also studied the effect of gravity, magnetic shear
(or field twist along a detached flux tube), and longitudinal wave number, n on stability.

We have found that a coronal arcade without a detached flux tube (or with all field lines tied to the lower
boundary) is stable for any magnetic shear and for any longitudinal mode. On the other hand. an arcade with
a detached flux tube is unstable for n : 0 perturbations and the instability mode structure and growth rate
vary depending on the field twist and longitudinal wave number n. All the equilibria we have studied are
stable to n = 0 perturbations.

Gravity has a stabilizing effect on the equilibria. The gravitational effect is measured by . (the ratio of the
standard arcade width to the gravitational scale height). As the . increases from zero to 0.2 the m = 0 trans.
verse mode growth rate decreases, but high m modes are stabilized. The equilibria we have studied are com-
pletely stabilized for ) > 0.33. This study enables us to understand the stable nature of coronal arcades and
prominences. and gives us an insight into solar eruptive phenomena.
Subject headings: hydromagnetics - instabilities - Sun: corona

I. INTRODUCTION negletting gravity aii,. biisiplifying the field configuration to be
The solar atmosphere exhibits various eruptive phenomena. in cylindrical geometry. The simplified one-dimensional MHD

Solar flares occur in active regions with highly sheared mag- stability problem is extended to a two-dimensional MHD sta-
netic fields of several hundred Gauss along a neutral line. A bility study by including solar gravity. Low (1984) constructed
very energetic solar flare is often associated with a prominence two-dimensional coronal arcades and studied the stability of
eruption in an active region. In a quiet region, where the mag- specific equilibria using the energy principle (Bernstein et al.
netic field strength is - 10 G, a quiescent prominence resides 1958; Hain LUst, and Schluter 1957). Galindo and Schindler
along a neutral line for several days or weeks but can then (1984) also used the energy principle to prove that
erupt without any advance warning. Various mechanisms have Kippenhahn-Schluter type prominence field configurations are
been suggested for the onset of the eruptive phenomena. One stable to linear MHD instabilities. Melville. Hood and Priest
mechanism is a crical shear beyond which no neighboring (1986) studied local modes analytically in two-dimensional
solution exists. The lack of neighboring solutions beyond the coronal arcades without magnetic shear. These studies are
critical shear is considered to explain the onset of eruptive restricted to the analysis of the stability of certain types of
phenomena (Low 1977). Another is reconnection between equilibria. Recently, Zwingman (1987) and Galindo (1987)
emerging flux and overlying magnetic fields which triggers an developed numerical methods based on the energy principle
eruptive phenomenon iCanfield. Prest. and Rust 1974: Hey- for the study of the linear stability of general equilibria. Zwing-
vaerts. Priest. and Rust 1974; Heyvaerts. Priest. and Rust man studied the stability of a sequence of equilibria with
1977). A third is an ideal MHD kink instability which causes increasing pressure gradient for a given magnetic shear but
an eruption of a magnetic flux tube (Moore 1988). In order for restricted the calculation to a two-dimensional perturbation.
the critical shear or reconnection to be a possible eruptive Galindo studied the stability of several existing prominence
mechanism the magnetic structure should be MHD stable models but did not study how line tying, gravity, magnetic
before re,.zhing the critical shear or reconnecting. If not. the shear, longitudinal wave number, and the surrounding
magnetic structure would first be destroyed by fast MHD ambient plasma and magnetic field affect the stability. In order
instabilities. On the other hand. in order for an eruption to be to understand the nature of quiescent prominences and various
due to a kink Instability, the magnetic structure should be eruptive phenomena we have to understand the consequences
MHD unstable Here we conduct an MMD stability study as a of these effects on stability. For the present study, we have
tirst step to the understanding of eruptive phenomena. The developed a linear MHD numerical model. Our numerical
stability study also enables us to understand the stable nature model is different from the previous models in that we solve
of quiescent prominences and coronal loops, time-dependent linearized MHD equations as an initial
The stabihity of a coronal arcade with field lines tied to the boundary value problem instead of using the energy principle.

photosphere has previously been studied lHood and Priest We have also developed a numerical magnetohydrostatic cqui-
1980: Birn and Schindler 1981 Ray and Van Hoven 1933 librium model for the computation of various equilibriumMigiuolo and Cargill 1983; Hood and Anzer 1987) while initial states. We will study the stability of equilibria with and

without a detached flux tube and with and without gravity for

various longitudinal wave numbers and various magnetic
NASAiMarshall Space Flight Center. shear.
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ii. NUMERICAL MODEL of line-tying, open boundary, and artificial viscosity are pre-

We solve the time-dependent linearized ideal MHD equa- sented in detail in the Appendix.

tions in dimensionless form:
III. EQUILIBRIUM INITIAL STATES

Po "= -/3Vp, + Jo x B, + J, x Bo + p1g, (1) We compute a magnetohydrostatic equilibrium for an iso-
ct thermal solar atmosphere by solving the force balance equa-

P •(tion (we drop the subscript 0 for convenience).
-i-V " 0 V)= ( 2 flVp=Jx B+ pg. (8)

The vector form of the equation can be converted to a nonlin-
T + v • Vpo + rpo V v = 0 (3) ear second-order differential equation by usinga~t

B= V x (A.e:) + Be.. (9)
B- V x (v x Bo), (4) Here A. is the z-component of the vector potential A. The

differential equation (Low 1975) is

V x B= J, (5) dB

p = pT, (6) V2A: +f(A:)e- A + B: = 0. (10)dA_
Here a subscript 0 indicates equilibrium quantities, a subscript ll
I indicates perturbed quantities, and v, p, J, B. T, and p are p(x, y) = e- i Po + - f(A.)dA.I, (11)
velocity, pressure. current density, magnetic field, temperature L /3 "(

and plasma density, respectively. In order to make the equa- dB.
tions dimensionless we normalize v, B, p, and p with Alfv~n J d -B A_ x e- (12)
velocity VA, B0 , P0, and Po at the lower boundary and time t is dA
normalized by the Alfv~n transit time across the width of an dB_
arcade. Lengths are normalized by the width of an arcade, and J. =f(A_)e- Y + B. -- = -V 2A. (13)
g is the dimensionless solar gravity defined as g = ;/. and "dA.
directed in the negative y-direction; r is the ratio ul. specific Vve solve equation (10) by specifying source fuaaciionsf(A) aad
heats, ). is the ratio of the width of a magnetic arcade to the B:(A) as
gravitational scale height, and / is defined by /= 41Po/Bo
(note that this / is one half of the usual plasma P). Since we f(A.) = x2A:, (14)
study the stability of two-dimensional magnetohydrostatic B-(A:) = y(A. - A,)2 for A, < A. < 1
equilibria with symmetry in the z-direction, perturbed quan-
tities have the for: B:(A) = 0 for A. <A A, (15)

fl(r, t) =f(x, y, t)e'k . (7) or

By using equation (7) for the perturbed quantities in equations B:(A:) = constant. (16)
(1H5) we obtain real and imaginary time-dependent linear By A: we denote zero at the ends and the maximum at the
MHD equations. The equations are integrated with time after center of the lower boundary, and A, is an input parameter for
a velocity perturbation is given to an initial equilibrium. The localized magnetic shear. With the above source functions the
numerical method we use is essentially the same as that devel- plasma pressure i dimensionless form becomes
oped by Bateman et al. (1974) and is presented in the Appen-
dix. We reproduced the results of Bateman et al. for p(x, y) = e Y(l + 0.5"cAZ//#), (17)
verification of our numerical code. We calculate the linear if we assume that p(x, y) = I for y = 0 and A. 0.
growth rate assuming that perturbed quantities have an expo- The source functions (14) and (15) imply that the longitudi-
nential time dependence. We integrate the kinetic energy, E, nal current is distributed over the whole arcade, with decreas-
over the whole computing domain and calculate the growth ing magnitude with height, and the transverse current is
rate at each time step using the equation: distributed locally to generate sheared magnetic field near the

a) = [in Eft + At) - In E(t)]/At neutral line. The value of a determines the magnitude of longi-
tudinal current and the non-force free component of magnetic

until w approaches a steady value. Since the kinetic energy is field, y determines the magnitude of magnetic shear. and A,
the square of velocity the real growth rate of a perturbation is determines the localization of the shear. For a given a in equa-
half of co. tion (14) an increase of B. in equation (16) does not change the

Our problem is different from the problem of Bateman transverse field, whdie an incrcase of y in equation (15) inflates
Schneider, and Grossman (1974) in that we study the stabilt the transverse field lines. The isothermal equilibrium has a
of gravitationally stratified coronal arcades with field lines tied density profile identical to the pressure profile. From equation
to the lower boundary in an open space. We have to specify a (17) we can see that the plasma pressure at the center of a loop
line tying boundary condition at th,- lower boundary and an increases as /3 decreases, resulting in an increase of the density
open boundary condition at the upper boundary. and have to in the detached flux tube. We compute two different equilibria
add an artificial viscosity in the momentum equation to sta- in the x-v coordinate system, one is a coronal arcade with a
blize a numerical instability which may develop in a gravita- detached flux tube and the other is , thout a detached flux
tionally stratified initial atmosphere. The numerical treatments tube. These equilibria are shown in Figure 1. B: - 0 results in
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twisted magnetic field lines wrapped around the detached flux the twist of a field line on a surface of a detached flux tube.
tube shown in cross section in Figure la with the twist decreas-
ing as B, increases. For the equilibrium we use equations (14) q = B .(A:)L: (18)
and (16) as source functions. Figure lb shows a coronal arcade

without a detached flux tube, obtained by using equations (14) Here. Br is the transverse magnetic field. The integration is
and (15). The magnetic shear increases with y in equation (15) c
unt 7 reaches a critical value beyond which no neighboring lne of . If q s less larger) thanuntilrachesa ritical alureubyon d whmichl noeighrig of 1, the field line wraps the flux tube more (less) than one turn
equilibrium exists. Our equilibrium numerical code is a part of along the length of the tube. For a circular cylindricai plasma
the instability code with the same spatial algorithm andlgri as pinch, the plasma is kink unstable for q < as implying that the
used in the instability code. We will study the stability of the magnitude of q determines the stability As B_ increases, the
equilibrium shown in Figure 1 for different field twist and magnetic shear of a field line tied to the photosphere and the
magnetic shear to show how they affect stability. q-value of a detached flux surface increase. affecting the stabil-

We will also study the effect of gravity on the stability by ity The relation between q and B: for the equilibrium of Figure
changing the value of .. For given source functionsf(A:) and la is shown in Figure 3. which shows q at the center of the
B:(A:), the field configuration changes with ;., as shown in detached flux tube increasing nearly linearly with B_
Figure 2. The size of a detached flux tube shrinks as ;. (or The first example we study is the stability under a purelygravity) increases two-dimensional perturbation. i.e.. the n = 0 wave. We find

IV. STABILITY that the equilibrium shown in Figure la is stable to n = 0
perturbations for all values of B:. Thus the equilibria we havea) Without Gravity studied, including the equilibria shown in Figure lb. are stable

We first study the stability of a sequence of equilibria with a to all two-dimensional perturbations. This result implies that a
detached flux tube (Fig. Ia) for a various longitudinal magnetic two-dimensional perturbation is not adequate for stabilit)
field strengths, B. and for various longitudinal wave numbers, studies of a two-dimensional equilibrium, and we do not con-
n. Here. the longitudinal wave number is defined as the number sider this case further.
of longitudinal wavelengths in the arcade length (L:) where the Next, we study three-dimensional perturbations. namely
arcade length is equal to the aspect ratio times the width of the n - 0 wave numbers. Figure 4 shows the instability growth
arcade. The longitudinal wave number n is expressed with rate w versus B: for n = 1 and 3. The dotted line is for n = 3
wavevector k as n = kL:_27. We define the factor q io repe.,ent and fl = 1. the solid line is for - I 1. arid zhc light
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solid line is for n = I and /3 = 0.1. It can be seen from this symmetric. If we combine the mode structures of Figures 5b
figure that the growth rate versus B: for n = I is much smaller and 5c, we see that the resultant mode structure is similar to
than for n = 3. We will discuss these results in some detail. that of Figure 5a. This figure thus implies that when we give a

Let us first examine the n = I mode. The growth rate for random perturbation, the two different modes of Figure 5b and
n = I and / = I (Fig. 4. solid line) shows that for B. lower than 5c become the most unstable modes, producing, as a conse-
0 6 (or for q lower than 0.68), the equilibrium is unstable. The quence. an asymmetric mode. We have checked the growth
'elocity structures for this perturbation are shown in Figure 5 rate of each mode and find that the growth rates are the same
for different initial perturbations but the same B:. Figure 5a is for all three. We also notice that the initial perturbations of
for a random velocity perturbation. Figure 5b is for a sym- Figures 5b and 5c cause a faster approach to the linear growth
metric v, but antisymmetric vy, and Figure 5c is for a sym- rate than the random perturbation does. In most of this study,
metric v. but antisymmetric v,. Figure 5a shows that the wt- use the perturbation of Figure 5c rather than the random
random perturbation produces an asymmetric unstable mode pe turbation, to reduce computation time. In analogy to the
structure. a surprising result because the initial equilibrium is m = 0 mode in a circuar cylindrical pinch (Bateman 1978,

---- n = 1
n 3
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FG. 7--Growth rate vs longitudinal mode number n, for B. = I and A 0 The longitudinal mode number n is usually an integer number, but we can also take a

real value because n = L., 2n and the wavevector k can be any number

also changes from an m = I to an m = 4 mode continuously sequence of equilibria with a specified continuously varying
for increasing n. The mode structures for n > 2 are shown in magnetic shear. rather than specified B:(A.).
Figure 8. The number of vortices increases as n increases and
the modes are more broadly distributed in the upper region b) With Gravity
than near the lower boundary. The high m mode structures are In § IVa, we have studied the stability of magnetic arcades
similar to the ballooning modes in a tokamak (Bateman and without gravity. This is a valid approximation when the gravi-
Peng, 1977). which are strongly localized near the outer surface tational scale height is muLn larger than the typical size of a
of the tokamak. The ballooning mode is considered dangerous magnetic arcade. For a coronal arcade (or loop) with
to tokamak stability because of its mode tructure. The implica- T = 2 x 106 K, the gravitational scale height is H. 6 x 10'
tion of the ballooning-type mode structure shown in Figure 8 kin. On the other hand, the height of a coronal helmet streamer
on the stability of a coronal arcade with a detached flux tube is is - 6 x 105 km, of the hot loops connecting two ribbon flares
not obvious. is - 101 kin, and of a coronal X-ray loop is 10' km (Priest

Next, we study the stability of a sequence of equilibria not 1984), which correspond to A values of . - 10, 2 and 0.2,
having a detached flux tube (Fig. lb) in the presence of increas- respectively. For a solar prominence with T 10' K, the scale
ing magnetic shear. Since we specify B.(A:) rather than mag- height is H9 : 3 x 10' kin, much smaller than a mature
netic shear, the sequence of equilibria does not necessarily quiescent prominence height of 5 , 10' km, which corre-
correspond to quasistatic shear motion Jockers 1976. 1977). sponds to . - 100. These estimates of the heights imply that
However. the increase of , in equation (15) does cause a gravity cannot be neglected in all stability studies.
monotonic increase of the shear. We find that the sequence of In § II, we defined dimensionless gravity, g, as g = A.l. For a
equilibria are all stable for , less than the critical value over given #3 value, the effect of gravity varies with A. In order to
which no neighboring solution exists, implying that quasi- understand the effect of gravity on the MHD stability we use
static evolution is possible up to a critical shear vithout any .arious ;. values and study the stabilitv of a coronal arcade
instability. Since no MHD instability is found during the with a detached flux tube. Figure 9 shows the growth rates
quasi-static evolution, the critical phenomenon is a good can- versus B: of the n = I and n = 3 modes for ;. = 0.1. The results
didate for indicating the onset of eruptive phenomena. This should be compared with Figure 4 for ;. = 0 to understand the
study could be further extended by studying the stability of a effect of gravity. This comparison reveals the stabilizing effect
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of gravity. For n = 1.i = 0.1 reduces the growth rate to half of n = 1 mode has its largest growth rate (for the kink mode) at
that for h = 0. and widens the stability region between the B = 1, Figure 10 provides a very useful llustratton of the
m = 0 and m = 1 modes from 0.6 < B. < 0.8 for )'. = 0 to overall stability change due to increasing A. Considering only
0.4 < B.. < 0.9 for A = 0.1. For n = 3, gravity has a significant n = 3, as A increases the growth rate for B. = 1.0 decreases to
stabilizing effect especially on the m > 2 modes. Figure 4 shows zero at,. = 0.09 while the growth rate for B. = 0.2 decreases to
that the mode structures for n = 3 with B. > 0.9 are m > 2 zero at . = 0.33. For,. < 0.09. the growth rate for B. =1.0 is
modes and these high m modes are completely stabilized by much lower than for B. = 0.2. For n = 1. the growth rates for

gravity. Since gravity stabilizes the n = 3 but not the n = I B_ = 0.2 and 1.0 both decrease to zero for . near 0.2 and the
kink mode for B. > 0.9 we might see the eruption of a flux tube difference between the two growth rates is not as large as for
due to the n = I kink mode for a randdom perturbatton in the n = 3. As ;. increases from zero, a detached flux tube with
longitudinal direction This is an important difference from the B. = 1.0 is soon stabilized against the n = 3 mode but is
2 = 0 case. in which the n = 3 mode dominates over the n = 1 unstable to the n = I kink mode until ;. reaches 0.2. For B. =
mode for all B:! 0.2, the n = 3 mode dominates the n = I mode for ; _< 0.33 and

Since A = 0.1 is unrealistically small for coronal arcades the transverse mode structure is the m = 0 mode. These results
,;. > 1) and quiescent prominences (A - 100), we have also imply that if a detached flux tube has highly twisted field lines,

studied the stability for larger values of ;.. Figure 10 shows the the loop can disintegrate due to the n = 3.m = 0 mode for
variation of growth rates for n = I and n = 3 modes versus . . < 0.33. but the tube is stable for . > 0.33. If the tube has
The dotted lines are for the n = 3 modes, and the solid lines are twisted field lines of one turn along the tube length (i.e., B. z
for the n = I modes, with B. = 0.2 or 1.0 as indicated. Since tne 1.0) the tube can erupt due to the n = I'm = I kink mode for
n = 3 mode has its largest growth rate at B. = 0.2 and the 0 1 < A < 0.2 but will be stable for ; > 0.2.
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FIG 9-Growth rate. ci %ersus B. for A = 0.1 The soliid Inme is for n 1 . asnd the dotted line is for n =3 Note that for B. 2: 1. the .i = I kink mode is unstable
%hile the n = I mode is stabihled by gravity.

V DISCUSSIONS A~ND CONCLUSIONS dimensional perturbations are unstable for equilibria with
detached flux tubes and we rind that the n =. 3 modes have

We have studied the MHD stability of coronal arcades with higher growth rates than the n = I modes for all B.. For n = 1,
and without a detached flux tube by using a two-dimensional the unstable transverse modes m = 0 arnd m = I are separated
linear MHD numerical model. For the study, we construct by a stable region in B_ but for n =3 the transverse mode
two-dimensional magnetohydrostatic equilibra with and structure changes continuously from the m =0 to the m = 4
without gravitN with symmetry along the -.direction. We study mode as B. increases from ze-.o to 1.5, without being separated
the stability fo~r different longitudinal wave numbers, n. For a by stable regions in. B_.
given n. the transserse mode structure is represented by mode Ligget and Zirin (1984) observed rotational motsuns in
number m. The instability structure is found to vary, depending several prominences and found that the motion continues
on the magnitude of B, which determines the degree of field through several turns while the eddy size remains constant.
twist and magnetic shear. They found that the rotational motion is an actual motion of

In the absence of gzravity, we have found that a coronal prominence material that does not debtroy the prominences
arcade without a detached flux tube is stable for any ..iagnetic and pointed out the dificult) in understanding the motion in
shear less than a critical value, above which no neighboring 'view of the conceptual model that prominences are being sus-
solution exists. Furthermore, all the equilibria we hav e studied. pc rnded in magnetic fields. the rotation must wind up the mag-
even those with a detached flux tube are stable to two- netic field. transfering energy to the field and slowing down or

'Iirmensiona perturbations for any B:. However three- stopping the rotation. We notice that the rotational motion
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i is the ratio of the width of the coronal arcade to the gravita-
tional scale height. The higher ;. is, the stronger the effect of

1 - n =1 gravity. Gravity is shown to play a stabilizing role for all the
n - 3 equilibria we have studied in this paper. It is found that higher

rm modes are more strongly stabilized by gravity than lower m
modes. For example, 1he n = 3/m = 0 mode is unstable for

BZ.02 ,A < 0.33 but r = 3/m > 3 modes are completely stabilized for
1.5 - B; > 0.09. Our equilibria are all stable for . _ 0.35. which is

much lower than a realistic value for ;. in coronal arcades (> 1)
and quiescent prominences (- 100). This result implies that
quiescent prominences may not erupt due to MHD insta-
bilities because of the strong stabilizing effect of gravity. In
order for a prominence to erupt, the gravitational effect should
be low (; < 1). A low value of ; can be achieved by increasing
the prominence temperature by two orders of magnitude. But,
even though some observations show a heating prior to an
eruption. no such temperature enhancement has been
observed. The gravitational effect can also be reduced if plasma

1.0\ condenses to form a prominence and the mass is supported by
the magnetic field. Due to magnetic support. the plasma
density would change slowly in the vertical direction, causing a
higher effective gravitational scale height than without mag-
netic support. If gravity stabilizes MHD instabilities in more
realistic prominence magnetic fields in this manner, then the
critical shear phenomenon is a good candidate for an eruptive
mechanism.

Zwiigman (1987) studied a critical shear mechanism for
solr ,rixptre phenomena by solving the magnetohydrostatic
equation. As he increased a pressure parameter, .P, suc-
cessively to a critical value for a given magnetic shear, he even-

0.5 tually found no neighboring solution. He checked the MHD
stability of the solutions against the n = 0 mode and founQ

\ 0.2 that the solutions are stable for 4., less than a critical value.
This stability study looks like a promising way to ensure that
the critical phenomenon is an eruptive mechanism. However,

11 . our result indicates that the stability against n = 0 mode does
z not necessarily mean stability against n :- 0 modes. The stabil-

ity for n # 0 modes must also be considered to make sure that
the sequence of the equilibrium solutions with ,;. less than

13 1 0 \ "critical value are stable.Z f ,, Our numerical model for linear MHD stability differs from
0 0.1 0.2 0.3 0.4 most previous studies in that we solve time-dependent linear

MHD equations as an initial and boundary value problem
X" while previous studies used the energy principle. One advan-

Fin . 10--Growih rale. w. versus A for B: = 0. 2and 0. Thesold lne s for tage of our method over the energy principle is that we can
n--landtihe dotted lineistorn = easily extend it to a nonlinear MHD problem and add non-

ideal effects. By transforming the coordinates as shown in
equation (18) we can also study the stability of coronal mag-

has a simiar pattern to the m 0 unstable velocity pattern netic structures which have open field lines. But we note that
shown in Figure 5a. In addition to this similarity, the m = 0 the method is restricted to the study of the most unstable
mode has the highest growth rate among various n. modes mode.
even under gravity, and the mode does not cause prominence
eruption Therefore. we suggest that the rotational motion is We thank Dr D. H. Hathaway for giving extensive advice on
due to the m = 0 unstable mode in a detached flux tube. The developing the numerical model and for reading and com-
closed field lines in a detached flux tube may allow the rota- menting on the manuscript. We also thank Dr. R. L. Moore for
tional motion to exist through several turns without winding his valuable comments during the course of this research. This
up the field lines. In order to confirm our suggestion. the field work is supported by NASA HQ Grant iNAGW-9) and Air
lines in the rotational region must be closed and highly twisted Force Grant IAFOSR-88-0013) iCHA and STW I and also by
for them = 0 mode. NASA Solar and Heliospheric Physics Branch and Space

The effect of gravity is measured with the parameter .. which Plasma Physics Branch (STS and CHA).
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APPENDIX

NUMERICAL METHOD

To solve equations I 1)-5) numerically, we specify velocity and all equilibrium quantities at the center of each grid cell and the
perturbed pressure. magnetic field, and density at the corner of each grid cell. The finite difference schemes are as follows:

At+ 2h [-flVpl + (J x B), + i.g]di/l+1. 2 ; (Al)
(A+i)1/2.j+ 12- (iA+ 112.J+ 1/2 (PA + 112.jv + 1/2 A+ 12 (At)

(1)1+312 rVx4)32(3( 1i-'
3 12 

+ 11'!'I
2  

1 s + 1 t/2 At[v x Bo]!+ (A2)
+ + 1/2.j + 1/2

+ \n *3/2 V X iA n* +312

- (p~) = 2 
= -Ain., ; 0, (A3)

.../2 (') n + 112 -At i i po f+ b[(P+ ik.po + Pov - v ; (A4)

(BPX 11.j 1/2 a ~~ 1 1.+2x aBy~+ /.1 ;} '(6

,i.j+ / 1(P),. + 2 L + + ik.. - o V - . (A7),.j+ i = -At(b OX ) -". +j (AS)

We use the perturbed vector potential A, to ensure V. B = 0 in our numerical calculation. The explicit expressions of the
x-component of momentum and induction equations are as follows.

The x-component of equation (A2I) is

2Vx +11. + /2 - (U2(+)/ 2.'i',/ -(..+ + 1/ 2 At f-l(PI)i 1) l/2 I + 12I.) - (POI.2.+ I -(PO. ](9

x 0.[5Ax + ()i,.+ 112 + (fiA+ 1i/2.j+112 -(J0:) +i12. 1+12 X ( 1y) i +- 1- 2 () -Ij2+ (iy),, . A+i

T Borie+ v1  2.1+ 12 - '1)+ are df + in (BOas+ 112. + I;2 (A6)
where

VJiA) + 112.j 1/2 = ik(/lix)j+ 112.j + 1/2 - [(B,:),~i + .,+ I + (B l-)j. + ., (B =I.)i. + - (B l=),j]A2Ax) (A7)

(J1)i+ 112. + It,2 = (Bly)i + I,1+ I + (BiY),-+ I. - (B,)..,+ I - (Bt)J, 2 l(2 x)

- [(BI.),. I., + I + (Bi) + I - (BVx), + . - 2 (BI (j) ../(2Ay) . (A8)

The x-component of the induction equations (A2) and (A3) are

P2 - (Ax),+ 2. + 12 
=  

*() 1, 2. j1+ 2 (a), 2. 12 - P 112. 12 ( 2 1 +(A9)(BIi),.1 = [(A-P)i + 1/2.. 2 (A/- - (2Ay) - ik2..i .- (A.1A)

The averaged valuesa n1itiey, l.).+ 112.h1 th 2 aredefine as
('Blx)'+i1-2.j112~ 

= [(BixJ,. i. It + (Bx)j+ i.j + (Bixj.j 1- + (Bt.),j/4 .

and the averaged values E->, E), E., f, Po),., are defined as

o x), U(Ox)1+* :2.1 1;2 
+  

(VA~+ 112.j- 112 + (v,),- 1,2 ,2 + (tv,)i- 1,2.,- 1!2"]/4.

The partial derivative of p. Po, v with respect to x and y are as follows.

a noo

=),. = D(O), + i 2. -1,2 +b (Po), + 1,2.1- i 2 -- (PoA- 1 2.j + 1,2 - (Po) -1 2.,- ,2]/(2A x) ,

C'X114

e' )y,. = Po), -l 2. -1 2- + (Po),-I1 2..1 , - (Po), I : .j-' I ,- Po), -I 2.- ]i'(2AV).

Since the perturbed quantities have the following form.

anal

.!_ = zkfl(r, 1).

the two-dimensional verturbation quantities t1,x, ., tl are complex. In order to solve the equations numerically. %e have to diide
each equation into real and imaginary parts which are coupled to each other for k = 0.
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For specifying boundary conditions. %e assumed that field lines are tied to the loxuer boundary. and that there is no charge
accumulation on and no energy and mass flow across the side boundary (Bateman et al. 1974).

Side boundary: E =0. V. E =0. P1 = P=0

Lower boundary. v = 0

For a lower boundary condition. r = 0 is sufficient to solve the equations when v is defined at the corner of each grid cell. When v
is defined at the center of each grid cell. '"e need to assume that equilibrium quantities are the same at the upper and lover cells of
the lower boundary.

We use two different upper boundary conditions depending on what coordinate system we use. If we assume that the upper
boundary is at a finite height in the y-coordinate the upper boundary condition is the same as the side bundary condition, but the
boundary condition is not realistic for solar magnetic fields which have an open boundary. In order to take into account the open
boundary we use an exponential coordinate which is transformed by

W = e
"

=k,
2 ))

in which the computing domain 0 < < 1 is equivalent to the physical domain 0 _< _ :c. In this w-coordinate w = I (i.e.. y = O) is
the lower boundary and w = 0 (i.e.. y = :) is the upper boundary. At w = 1, the boundary condition is v = 0 but at w = 0 we
specify B = 0, Pi = P, = 0. To transform the coordinate from y to w all the y derivatives are changed as

ef ef

In this paper we assume that coronal arcades hale a finite upper boundary. The stability of a coronal arcade with open boundary
will be studied later.

The time-dependent computation is initiated by a random velocity perturbation to an initial steady equilibrium state. After the
perturbation. we calculate B,. P . and pi at t = At,2 and then calculate v at t = At. After the initial step, B1 , Pi. and pi, are
advanced in time with the time step At alternately with v until we reach the linear growth rate.

0.5

0

-0.5

4 8 12 16 20 24

FI(; I I -Growth raitc of a siabl cuilhrium., s s time ir di erent ,alues of th, artiticiai iscosii f.ocfiicieni rhc light solid line is for IIw)(. thc doicd
im Isfor = O(XX)3. and ihe hcavv soid inc is lor = )(XX)5
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FIG 12L-Growth rate of an unstable equihbnum~, v."s time for different values of the artificil viscosity coefficient. The solid line is for v =0,0001, and the dotted
lineis for v = 0 0003.

We add[ an artificial viscosity term, Po vV'v, to the momentum equation ( 1) to stabilize a numerical instability which develops in a
gravitationally stratified atmosphere. When numerical instability develops, the velocity is distributed randomly and oscillates in
time with very short periods. We find that the artificial viscosity term is not needed in the absence of gravity. Figure I11 shows how
the growth rate of a stable equilibrium changes with time for different v values. The figure shows that the growth rate keeps
oscillatlng around zero as time progresses. which is a typical phenomenon for a stable euillbrium. For v = I x 10- ' the growth rate
oscillates randomly wi th short periods but for v = 3 x 10-' and 5 x 10 - ' the oscillations are more orderly and have longer
periods. Figure 12 shows how the growth rate of an unstable equilbrium saturates to a linear growth rate and how the linear
growth rate depends on the magnitude of v. For v = I x 10-' , the growth rate oscillates randomly with high amplitudes before it
saturates to a linear growth rate while for v = 3 x 10 - the oscillation is less random and the saturation occurs earlier. We find that
the linear growth rate decreases as we increase the magnitude of v, for v = I x 10-' . 3 x 10-' , and 5 x 10 -' . the linear growth
rates are co = 1.07, 1.01. and 0.97, respectively The result indicates that w~e should ust. as small value of v as possible in order to not
alter the stability result. Too small value causes not only numerical instability but also a longer saturatvon time. It is found that
v = 3 x 10-' is the optimum value for an equilibrium witn open boundary, but we can reduce the value down to v = I x 10-' for
an equilibrium with a finite upper boundary. In this study, we choose v = 3 x 10-' .

With a firlte upper boundary, a low (or zero) alue of v does not cause severe numerical instability. A severe numerical instability
occurs only when the time step At violates the Courant-Fiedrlchs-Lewy (C'--' ,onditon We have to c~icck the CFL condition
when we increase magnetic shear because higher mnagnetlc shear causes a lower transit time of an Alfven wave across each grid cell.
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ABSTRACT

We present. for the first time, full analytical solutions to the wave equations for stead." vertical compression
waves in an isothermal hydrostatic atmosphere with uniform horizontal magnetic field. There are two classes
of waves: Il) upward waves, those which are excited from below by a horizontal perturbing surface: and (2)
downward waves, those which are excited from above by a horizontal perturbing surface. We show that in the
,teadv state approach the behavior of these two classes of waves is different. The upward waves are non-
propagating Istanding) waves for any wave frequency. For each frequency. there is a critical height in the
atmosphere below which the upward wave is a regular standing wave and above which the wave is an evanes-
cent standing wave. The critical height is the height at which a local characteristic frequency. defined by the
local fast mode speed divided by twice the scale height of the isothermal atmosphere, equals the wave fre-
quency. This characteristic frequency, which we call the local critical frequency, increases with height because
the Alfv~n velocity increases with height. Above the critical height reflection on the density gradient dominates
the behavior of the upward waves. The downward wacs are propagating waves for all frequencies that are
higher than the acoustic cutoff frequency obtained for the same isothermal atmosphere without magnetic field.
If the frequency of the downward wave is at or below this cutoff, the wave is an evanescent wave. These
results show that the finding by Thomas. that the cutoff frequency for vertically propagating magnetoacoustic
waves in an isothermal atmosphere with horizontal magnetic field is the same as for isothermal atmosphere
with no magnetic field, is true only for the downward waves.

Subject headitqs" hydromagnetics -- Sun: oscillations - Sun: atmosphere - wave motions

I. INTRODUCTION

\ number of authors have considered propagation of magnetohydrodynamic IMHD) waves in an isothermal hydrostatic
atmosphere suffused b% a uniform. oblique (or. in a special case. horizontal) magnetic field. Many have used a local dispersion
relation in which the stratification of the atmosphere gives rise to cutoff frequencies IMcLcllan and Winterberg 1968: Stein and
Leibacher 1974. Ihomas 1982. Musielak and Rosner 1987. see also reviews by Priest 1982. Thomas 1983; Campos 1987 and
references thereini This approach is justified only when the %ertical wavelength is much smaller than the atmospheric characteristic
scale height (the WKB approximation). It has been shown recently (Thomas 1982. 1983. Campos 1987. Musielak 1988) that many
results previouslk obtained were outside the range of salidit. of the local dispersion relation approach and that the cutoff
frequencies were incorrectly calculated.

In order to obtain the correct cut Aff frequencies. either a global dispersion relation for MHD waves is needed or exact analytical
,olutions of the wa,e equations derised for stratified atmospheres are required. The first case was considered b% ' u 119651. Deutsch
196') and N'e and Thomas )1974)., who calculated a special case when the background atmosphere is isothermal with a horizontal
manetic field that decreases exponentiall. with height In this approach. the wse equation leads to a global dispersion relation
,,%hich is the same in the whole atmosphere and is not restricted to short xertical waelengths. this allows properl% defining the true
cutoff frequencies Howe%er, this approach is ser% limited and cannot be applied to more realistic situations. Similarl . in the second
L.ase the exact anaiyticai solutions of the MHD waxe equations hate been found onl in the limited situation of an isotherm,.
,ttmosphere wcith a uniform magnetic field

\ ,,pec aie ot unitorm and purely horizontal magnetic field was considered Summers 1976) who obtained approximate
,olution, in the limit of low- and high-/l plasma .ase w( here /1 is rdtio of Wound speed to the Alfen elocitt)and showed that in the
limit of low-fi plasma 'he resulting solution iepresents ,i sandine wase. lie also found the formal solution,, Lien in terms of
h} pergeometrie functions \lore recently. lhomas 119821 and (ampos 11985i %.,iculatcd the cutoll frequenco b' solsing the wae
cquation for %clocity perturbations and found exal.t anaitical solutions which. they thought. were ,alid for icm .h,,e ph,sical
space (it the .onsdcred model and for any direction of wa e propagation .\lso. thc. concluded that the cutoll frequenc. is not

itlectt'Ll M the streni t the unlltnm hori/ontal ndUnetil hCld and therefore does not dk. 1t on the Alfscn lcity . Unsead fle%

\ \' \R( Rce.irci \,,,,o. cI



COMPRESSION WAVES IN ISOTHERMAL ATMOSPHERE

,uggested that the filtering of magnetoacoustic waves through the atmosphere is a pure compressive phenomenon. being thereby
identical to the filtering of acousto-gravity waves. There are, however, two important problems with their approach as well as with
Summers approach-namely, they did not obtain full solutions to the wave equation (see § III and Appendix A for physical and
mathematical arguments. respectively) and did no. specify the direction in the atmosphere from which the waves are excited. It must
be emphasized that the latter point is essential for any inhomogeneous media as the physical conditions and their variation with
distance from the wave source are different in different directions, therefore waves excited upward (again, t gravity) and downward
(in the direction of gravity) with respect to the wave source behave differently.

It is our main goal to obtain first full analytical steady solutions to the wave equation derived for compression Nertical waves in
an isothermal atmosphere with uniform horizontal magnetic field, and to show that the solution for the waves excited from below is
different from that for the waves excited from above. We shall derive and solve the wave equations for the velocity perturbations and
for the magnetic field perturbations, finding that the latter show different spatial variations than the velocity perturbations.

We begin our presentation with some physical considerations concerning two simple cases: the "cold" plasma case and high-fl
plasma case. It is shown that in the case of cold plasma, compression waves behave similarly to purely transverse Alfv6n waves and
that there are two distinct solutions to the wave equations: standing and propagating waves for the upward and downward
directions. ,espectively. We also introduce a characteristic frequency (called here a local critical frequency) that determines, for a
given wave frequency, the height in the atmosphere at which wave reflection becomes important. By comparing these results to
those given by Thomas 11982), we find that no standing wave solutions and no local critical frequencies are obtained in his
approach. Therefore, his solutions cannot describe the behavior of the upward waves in the limit of cold plasma. However, when the
limit of high-fl plasma is considered, Thomas's solutions with the acoustic cutoff frequency determining the type of solutions are
recovered. This implies that Thomas's results describe only the behavior of the downward waves.

After considering these two simple cases, we present the full solutions to the general wave equations describing the behavior of
%etical compression waves in our model (§ IV) and then show how to select physical solutions (§ V). We find that the upward waves
.orrespond to the upward waves in the cold plasma case; the local critical frequency has the same role and the same physical
meaning in both cases, The downward waves correspond to the downward waves in the high-fl plasma case. the acoustic cutoff
frequency determines whether the waves can or cannot propagate. This is the same result as that found by Thomas (1982), although
lie apparently did not realize that the result does not apply to the upward waves but only to the downward waves. In § VI, we
discuss possible applications of the obtained results to solar and stellar physics.

II. BASIC FORMULATION ANt) WAVE EQUATIONS

Throughoiu this pae,, we assurc that the background atmosphere is in hydrostatic equilibrium with uniform acceleration of
gravity (g = -g,), and that the atmosphere is a perfect gas with uniform temperature To. Hence, the density variation is given by
po(z) = Poo exp (-IH), where H is the density (and pressure) scale height and Poo is the gas density at - = 0. We also take the
atmosphere to be permeated by a horizontal uniform magnetic field given by B0 = B i.; in this case the magnetic field has no effect
on the equilibrium of the atmosphere. The density scale height is determined by H = V'., where V[ (yR T01 'p)' 2] is the adiabatic
sound speed. Hence. the model atmosphere is specified by the free larameters: Bo, To, Poo, g, 7 and u, which are constant in the
whole atmosphere.

We assume that both velocity and magnetic field perturbations depend solely on height. -, and time. t. and given by UQz, t) =

ti:. t)- and B(z. t) = 8 o + b(z, t)i (see Fig. 1). As shown in this figure, we introduce the coordinate system with the plane z = 0
dividing the atmosphere into two half-spaces characterized by decreasing (positive z) or increasing tnegative z) density with distance
from - = 0. This leads to plasma # [denned here as V., V, Nhere i = B, (41rp,) 2 is the Alfven velocity] being arbitrary at the plane
- = 0 and only in a special case does I(z = 0; = I. Because Poo is an arbitrary parameter. the plane z = 0 can be placed anywhere in
the atmosphere. We also find it useful to assume that the wave source is located on this plane, i.e, that the plane itself generates the
waves isee Fig. 2). We assume that the plane (to be called the forcing plane or horizontal perturbing surface) produces upward and
downward propagating magnetoacoustic waves, and we study the steady state wave behavior. It is obvous from a physical point of
' iew that the conditions for waves in the upward and downward directions are significantly different because, far from the forcing
plane. upward and downward waves are in a medium with very low and very high-fl plasma, respectively. We discuss this in detail in
the following sections

The MHD equations are considered in the approximation that the gas pressure is a scalar and that displacement currents and
electrostatic forces are neglected. We apply the MHD equations to our model of the atmosphere and then linearize them by
assuming that the perturbations about the basic state are small and adiabatic. This leads to the following equations for conservation
of mass. energy, momentum and magneti flux:

P
, oe -.. )u=0" (I)

('p ., (

-P - I0 u + p1 " -z- = 0 . (2)

-' - -- q +- -.-- 0. :3)
It : 4n v:

and ,Irrd

"n"- =0 (4)
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FIG. 1.-Definition of the pertinent symbols relating the directions between the gravity, g, the uniform background magnetic field. 8o, the perturbed velocity, U,
and the perturbed magneuc field, .Note also that the density po(z) decreases with height according to hydrostatic equilibrium in an isothermal atmosphere; hence,
both P and V decrease exponentially with height.

In equations (1)-(4), the perturbations of density, p:essure, velocity and magnetic field are represented by p. p, u, and b, respectively.
Equations 0)-(4) show that we are considering only MHD waves with an x-compoaent of the perturbed magnetic field; these are
purely compressional (magnetoacoustic) waves that oscillate vertically, perpendicular to the magnetic field lines.

The wave equation for the velocity perturbation u may be obtained by eliminating p, p, and b from equations (1H4). This gives
(see also Nye and Thomas 1974)

82u (vu V, (5)(V'--  + V + - T 0 o.(5
at2  H az

In the previous studies of this problem, only the wave equation for the velocity perturbation has been considered. However, as
known from studies of Alfvn waves (see Ferraro and Plumpton 1958) the velocity and magnetic field perturbations behave

+ 00

z

4' Standing Wave
Upward Solutions
Direction

x

Downward
Dircclion Forcin Plan

Propagating or Evanescent
Wave Solutions

Fir. 2 -Sketch of the forcing plane imagined in the physical considerations by which we select the wave solutions for upward and downward waves These steady
state solutions show I1) that ali upward waves are standing waves for any frequency and any values of the parameters of the model atmosphere (for B, > 0 and H
finite). and 12) that the downward waves are either propagating or evanescent waves depending only on whether the frequency is higher or lower than the cutoff
frequency w, = VJ211 set by the temperature of the atmosphere land by q. -, and ')
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differently in a stratified medium. Therefore, we also derive the wave equation for the magnetic field perturbation b and for the
perturbations in density and pressure. We begin with the magnetic field perturbation and eliminate all the variables from equations
(1H4) in terms of b. This gives the wave equation in the form:

8 _ (V2 + V) a 2b + V 2 Ob
-Ft2; (V1+ 41)' - H a o (6)

By comparing this equation to equation (5), one sees that the wave equations are different, which means that the MHD variables u
and b show different spatial dependence in an isothermal atmosphere. We find that the wave equations for redefined variables PIPo
and p/po satisfy the same wave equation as for the magnetic field b; this formally allows us to deal with only two wave equations of
different forms (for u and b) and when the latter is solved the solutions for both p and p are immediately known. The wave equations
(5) and (6) fully describe the downward and upward waves below and above our wave source. If there are no gradients (H -* co) the
solutions to the wave equation represent magnetoacoustic waves propagating with the phase velocity V' = V2 + V1 resulting from
compressional stresses in both the gas pressure and the magnetic field pressure.

IIl. PHYSICAL CONSIDERATIONS

Before the full solutions to the wave equations (5) and (6) are obtained for the model described in the previous section, we begin
with two simple cases, the limits of cold plasma (fP 0) and high-fl plasma (fP > 1). We discuss physical implications for the wave
behavior that result from considering these simplifications and find that upward and downward waves behave differently. By
comparing our results with those obtained by Thomas (1982), we conclude, on the basis of physical arguments, that the behavior of
the upward waves in the case of cold plasma cannot be described by Thomas's approach (see also Appendix A for mathematical
arguments) and therefore his approach is of limited applicability. Thus, we conclude that a new treatment of this problem (in the
case of finite temperature) is necessary. Our interpretation of the full solutions, presented in § V, is guided by our understanding of
the simple limiting cases considered here.

a) Limit of Cold Plasma

To consider the compression waves in the limit of cold plasma, we assume that V, -- 0 and g -. 0 to give the density scale height
H = const. Then, equations (5) and (6) are reduced to the form which is identical to that describing purely transverse Alfvin waves;
this means that the fast mode waves propagating across the field fines benave -simiiarly to Alfv6n waves propagatilig io,,g LuC

magnetic field lines. Note that this similarity is only mathematical as the main physical differences between the two types of waves
still remain. In the case considered here, the fast waves are purely compressional waves and exist because of the field compression,
while Alfv6n waves are purely transverse and tension stress of the magnetic field is responsible for their existence. Despite this
physical difference, the basic propagation equations are the same and therefore insight into the wave propagation properties may be
gained by using the results previously obtained for Alfv6n waves propagating in a stratified medium with a vertical and uniform
magnetic field (Ferraro and Plumpton 1958; Hollweg 1978; Leroy 1980; Rosner, Low, and Holzer 1986, and references therein; see
also An et al. 1989, for a numerical time-dependent approach).

To describe the behavior of compression waves propagating across the field lines in the cold plasma, we begin with transform-
ation of equations (5) and (6) using a new variable r/= wo/wo(z), where cow(z) = V,(z)/2H, and change wave variables as follows:
u(z, t) = u1(q, t) = u,(q)e-' and b(z, t)/(po)1/2 = b (z, t) = b2(t, t) = b3(fl)e

- w. This gives

r2 d2u2 du,n2U2=(7
dtq"" + q] _d j U2-- 0 7

and
q2 d2 b, db3
2 !;bi-+ q d11 + (12 _ )b3 = 0, (8)

which are the Bessel type of equations with the solutions given by u2 = C, Jo(r/) + C 2 Yo( 1) and b3 = C3 J( 1 1 ) + C1 Y(); J and Y
are Bessel and Weber functions, respectively, and subscripts 0 and I determine the order of the functions.

Now, we must introduce the forcing plane and obtain solutions in the upward and downward directions. It can be easily shown
that in the model considered here, by analogy with Alfv6n waves in an isothermal atmosphere (An et al. 1989), the upward waves
have finite transit time (exponential increase of the phase velocity) to reach infinity and therefore they are always standing waves;
this means that the standing wave solutions are unavoidable for the upward direction. However, for downward waves the transit
time to reach infinity is infinite (exponential decrease of the phase velocity) which means that these waves are propaqatng waves.

The obtained solutions to equations (7) and (8) describe standing waves if the constants of integration C,.*,3.., are real numbers
For the upward waves, then. we can apply the boundary condition of finite amplitude at z = + 0o (see Fig. 2) to determine two of
these constants. We find that both Weber functions (Y, and Y,) are infinite at )I = 0 and by physical reasoning (finite wave energy
density) these solutions have to be excluded by assuming C2 = C4 = 0. Hence. the solutions for the upward waves are given in the
form: u, = C, Jo(r/)e- ' and b2 = C3 J,(1)e - ' . The functi-ns J0 and J, are plotted in Figures 3a and 3c which show that both
functions can be divided into two t "parate parts, namely, the part with and the part without nodes. The latter part is the wave in the
region of atmosphere where reflection dominates (see An et al. 1989) as the wavelength becomes longer than the local annsity scale
height. in this region the wave is called here evanescent standinq wave. The other part with nodes is in the region of the atmosphere
where the wavelength is shorter than the local density scale height and therefore there is little reflection, in this region, the standing
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FIG. 3.-Upward and downward waves in the cold plasma case. The upward standing wave solutions, given by the zeroth and first-order Bessel function, are
plotted for the velocity and magnetic field perturbations in Figs. 3a and 3c. respectively. The downward propagating wave solutions are presented in Figs. 3b and 3c
for the velocity and magnetic field perturbations, respectively. The forcing plane is located at n = 13.4.

wave is formed Irom two opposite propagating waves and is called here regular standing wave. The fact that the steady state
solutions describing behavior of compression waves in low-#l plasma represent standing waves was first shown by Summers (1976).
However, he did not discuss this problem in terms of the upward and downward waves and did not pay attention to wave reflection.
Our paper deals with both these problems in detail.

The transition between the region of evanescent and regular standing waves does not take place at one particular point but
gradually through the vicinity of the height at which the condition co = co. is satisfied. It was recently shown by An et al. (1989) that
at this height wave reflection dominates in the wave behavior. Hence, it is arbitrary but reasonable to adopt the point where co = Co.
(or . = 4nH) to the boundary between the two regions. That is, for co > a). the upward wave solutions are reasonably called regular
standing waves. Above this height, co _< w, and the the upward waves reasonably called evanescent standing waves. Note that for
finite uo. the condition w < cu_ is satisfied above some height for any wave frequency, which means that the evanescent standing
waves are unavoidable steady state solutionrs for the upward waves. Hence, at any given height, as the wave frequency wo is
decreased, reflection becomes dominant and propagation becomes suppressed as w drops below co,. We therfore call cu. the local
critical frequency. Sometimes. this frequency is also called the cutoff frequency (e.g., Campos 1987) by analogy to the acoustic cutoff
frequency. the latter, however, is the same (global) frequency for the whole atmosphere Isee the next subsection) which makes it
different from the local critical frequency.

Now, we consider the waves that propagate downward from the forLIng plane. Betausc the piopagatlon time tu = - kC is
infinite for any wave frequency, the downward waves are propagating waves for all wave frequencies, there is no cutoff frequency for
downward propagation in the cold plasma limit. For propagating waves, both constants C, and C, must be purely imaginary and
equal to C, and C3 in magnitude. Hence, the solutions can be written in the form: u, = C1 [Jo(/) - iYo(q)] and b, = CA[J 1(q)
- IYI(t)]. These solutions represent downward propagating waves for any real constants C, and C. We plot the real part of these

solutions in Figures 3b and 3d.
To summarize, the results presented in this bubsection demonstrate similarities in the behavior between compressional and

transverse iAlfvenl waves considered in a cold plasma medium. We see that there are two distinct classes of steady state solutions.
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standing and propagating waves existing for the upward and downward directions with respect to the wave source, respectively (see
Fig. 2). We find that the upward waves become evanescent standing waves above some height for any wave frequency, and below
that height the upward wave is a regular standing wave composed of two oppositely directed propagating waves. The height in the
atmosphere at which the upward waves become the evanescent standing waves is roughly the height at which the LuOndition co = w.
is satisfied, this means that co. is the local critical frequency. The downward waves are propagating waves for any wave frequency.

Finally, we need to compare the results obtained here to those given by Thomas (1982) and find out whether the same
conclusions, concerning the wave behavior, can be drawn from his results. As shown in Appendix A, Thomas's solutions are
represented by descending power solutions, which means that they apply to the singular point at : = - c (large fi) and cannot be
valid in the vicinity of the singular point z = oc (f = O)for any real wave frequency. However, as demonstrated by the solution to the
cold plasma case. the steady state solution for the upward waves must include the point z = oc. Therefore. Thomas's results are
mathematically flawed for the upward waves. The full solutions to the problem of the wave behavior in an isothermal and stratified
atmosphere with uniform horizontal magnetic field are presented in section 4.

b) Limit of High-fl Plasma
In the model considered here (see § II), the limit of high-fl, (VJ V > 1) plasma is naturally expected for the downward waves

because V decreases with depth (see Fig. 1). Thus, we assume that the wave source (or the plane z = 0) is located in the region of
sufficiently high density to have the condition P > 1 fulfilled everywhere below the plane. This means that the whole medium for
downward propagating waves is a high-fl plasma and that in this limit the wave equations (5) and (6) are reduced to the well-known
wave equation for acoustic waves propagating vertically in an isothermal atmosphere (Lamb 1945; Moore and Spiegel 1964). In this
case, the phase velocity approaches V and the waves mimic the behavior of acoustic waves. Hence, they are either propagating waves
for co > co, or evanescent waves for wo s co, with co,(= VJ2H) being constant in the whole atmosphere and called the acoustic cutoff
frequency. This shows that the acoustic cutoff frequency has a distinctly different role than the local critical frequency co, the cutoff
w, determines the behavior of the downward wave solutions and cu determines the height at which the upward waves transition
from regular standing waves to evanescent waves.

The conclusion that the condition cu > w, is necessary to have propagating wave solutions was obtained by Summers (1976) from
his approximate solutions and also by Thomas (1982) and Campos (1985) who solved the wave equation (5) without any approx-
imation by reducing it to the hypergeometric form (see Appendix A). In this paper, we confirm their results but would like to
emphasize that those results concern only downward propagating waves because, in the steady sute approach. there are no
propaqatna wave solutions for the upward direction. The latter was demonstrated in the previous subse.:on for :he cold ply.sma case
and will also be extended on the general case of fnite temperature (see §§ IV and V). Each upward steady solution is a standing wave,
even though below a critical height this standing wave is composed of upward and downward propagating waves. Summers (1976),
Thomas (1982), and Campos (1985) missed the point that the propagation cutoff at co, is only a property of the downward waves.

IV. FULL ANALYTICAL SOLUTIONS TO THE WAVE EQUATIONS

In this section, we present the transformed form of the wave equations (5) and (6), discuss their mathematical properties, and give
full solutions to these equations. The physical interpretation of the obtained solutions can be found in the next section.

a) Transformed Wave Equations and Their Properties
After having presented the wave equations and discussed the wave behavior in the limits of cold and high-fl plasma. we now

proceed to obtain full solutions to equations (5) and (6). To do this, we transform these equations using the plasma/3 and change
variables as follows' u(z, t) = u,(/#, t) = u2(fl)e " and b(z, t) = b(z, t)(po)112 = b2(fl, t) = b3(fl)e - " .This gives

d2N + [) N- + "=7 N= 0 (9)

where
1+ a, [P1(fl)- I + a/ ,2  (I0)

c, jjZ - d(
I + /I,

with = I= 2.N , = Cu,, bd, a, = [3, 5], c, = [ ' 2, (3 + a-')], d, = [0, 1] and

(t)

C,)

being an arbitrary constant parameter.
From a mathematical point of view equat.on (9) shows one singular point on the real finite axis /i 0) and. according to the

results of IVc. one singular point at /i = ;-.. both these points are regular .sinqular point.s. To find the full solutions to equation (9),
we begin b obtaining the solutions in the vicinity of the regular singular point at 11 = 0 and then discuss the range of validity of
these solutions As shown in the next subsection, the solutions obtained at /3 = 0 do not cover the whole space and therefore we must
also explore solutions at the singular point / = f, and at the ordinary point /13 = I After obtaining full solutions to equation (9), we
,hall select the physical solutions for the upward waves and for the downward waves (see § V).
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b) Singular Point Solutions at fl = 0

The solutions in the vicinity of the real singular point can be obtained by assuming that all the functions in equation (9) are
analytical and by making the series expansion of P, Q, and N; about fi = 0. For P, and Qj, this gives

PAP) = p,, = 1 - (a, - 1) 1)# 2 n, (12)
n=O n=1

and

n~2n
QXXl a.) = q,. fi" = di - (c, + di) ) R )Ol (13)

R-O R-1

with all odd coefficients being zero. It is easily seen that these series expansions converge only for # < 1, which restricts the solutions
to where V > V. In addition, the series expansions (12) and (13) show a discouraging slowness in converging when P - 1. Thus, to
present the full solutions to equation (9), we must also obtain the solutions in the vicinity of the point P = 1 as well as the solutions
for P > I. We deal with these problems separately in the next two subsections.

Now, we are looking for the solutions given by the series expansion following the standard procedure in solving differential
equations in the vicinity of singular points (e.g., Murphy 1960), and obtain

NO~f) = D inrl+ , (14)

R=O

where ) is a free parameter to be determined from the idicial equation and (D,- [4,, in] are the expansion coefficients for the
velocity and magnetic perturbations, respectively; 0o and q'o are arbitrary constants. Note also that the coefficients , and i,,
depend on the constant paramerer a, but to present the results in a more compact form this is not explicitly shown in the above
equation. The same convention is to be assumed in later parts of this paper where only dependence on P and t is emphasized. It is
easy to demonstrate that the indicial equation shows two solutions: A, = A2 = 0 for the velocity perturbations, and A, ,= ± 1, for
the magnetic field perturbations. Because in the first case both roots are zero, the solutions always contain a logarithmic term. In the
latter case, the roots are nonzero integers and therefore we need to test whether the logarithmic term occurs in the sobition.
Following M-.rphy (1960), we calculate 6 = A, - A2 = 2 and look for the constant 0J6= 2 ). It appears that 02 is not an arbitrary
constant. Thus Lhe logarithmic terni will also exist in the solution for the magnetic field.

Solutions for the velocity perturbations are given in the following form:

u1(f, t) = [C, O'o(fl) + C 2 go(p)]Ie
-

a
"

', (15)
where

1() = Y4' 2 .,p 2", (16)
n=O

with 00o = I and
I " -

2. -1 (- l)-"(4m + a;2)0, (17)
(2n)' .=

valid for all n >_ 1 C, and C2 are arbitrary consto.ts of integration to be determined from boundary conditions. In the following
parts of this paper, the letter C will be always used to denote the constant of integration.

In addition, we have

-o(p) = oo(f)In(f) + 4" 2 , (18)

where 0' = 0 and

L2n )2 ' (-I)" (4m + s-2) 
'2im 02. + 4mob2  , (19)

(2n)2 .0 Ln m

valid for all n > 1.
The solutions for the perturbed magnetic fields are given by

b2 (fl , t) = [C 3 )I(fl) + C 4 I ()]e -  (20)

where

Y ~l = - nl
n - I  (21)

wth l' 0 = = -x 2 /2,and

I n-

n _ _) - "(8m + 0!, 2 )0, , (22)2 4nln - 1) .-

valid for all n > I.
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In addition, we have

a()(fn) = ,1 (f#)in((3) + , 2, 1  (23)
R=1

where ¢6 = 1, I,2 = (a - 8)4, and
I ,(- 1 )--I

____~ - I(8m +a-')¢, 2n - 0P2. + 8mO2', (24)

valid for all n > 1.
It is easily seen from the above equations that in the limit of P << 1, the functions fo and , reduce to Bessel Jo and J, functions

of the zeroth and first order, respectively. The same is true for the functions Yo and Y which, in this limit, become Weber functions
of the zeroth and first order, respectively. Therefore, we may call the functions obtained here generalized Bessel and Weber
functions.

Note that regular Bessel and Weber functions which result from equations (7) and (8) depend on the argument ? instead of P; both
arguments are, however, related by P3 = a, q. To make the comparison between regular and generalized Bessel and Weber functions,
we transform fo0,(3) -* 0, (?1) and "do.'(fl) - oY. (q) with ?I< a;' resulting from the condition that P3 < 1. The results plotted in

Figure 4 present the zeroth order generalized Bessel and Weger functions obtained for two.different values of , (0.025, 0.075) and
compared to the regular Bessel and Weber functions. In addition, the figure shows that the region of validity of the results is very
sensitive to the parameter ;, and that convergence of f 0 (r/) and ado('i) does not occur for all ?I< ai t, but instead only for

t/ <S 0.5 a ;; the latter is indicated in Figure 4 by the last zero of these functions before they diverge. It should be also mentioned
that for small ?I both generalized functions become identical to their regular counterparts and that this does not depend on a.

c) Singular Point Solutions at P = oo

As shown in previous subsection, the solutions obtained at the point P = 0 are not valid for all P. Thus, as the next step, we find
the solutions for P > 1, which is equivalent to obtaining the solutions in the vicinity of P3 = 7o. To do so, we define a new variable
X 1/# which allows finding the solutions for large P3. Using M-(X) = N(), we write the wave equation (9) in the form:

d 2
M +Z dA2xm + 2L2M, =0, (25)d2  Px) d 1  QX,;)

where

=1 + 2  26)

+ X 2  (27)
Q (X a,)- 1+ Xz 2

and e, = [1, 3].
Now, the wave equation (25) shows only one regular singular point on the finite real axis (Q = 0 or(3= P ), and we may again

write the series expansion of functions Pi and Q, in the following form:
0 o 0

P() = p Xp = -e, - (I + e)(-l) 2 n, (28)

Qx,)= q, = cl + (I + c.) (l) Z (29)
n=O n=1

These series are convergent when the condition X < I(#3 > 1) is satisfied, which restricts the solutions to where V < V.
Again, we are looking for the solutions given by a series expansion and obtain

M,4X) = Y. X" (30)
n-0O

where ;. is a free parameter to be determined from the indicial equation, and Tp,. = [ 0j iL] are the expansion coefficients with 4'0
and i, being arbitrary but nonzero constants for the velocity and magnetic field perturbations, respectively. Note also that the
coefficients P,, depend on the parameter ),. In this case, the indicial equation shows, in the case considered here. two complex roots2 ,)/oo U ] for the magnetic field

defined by - I ± .[(w - G)/ o2] 2 for the velocity perturbations, and by .IZ 2 + i[(,- 2 _ 2) l2 ftii

perturbations. Calculating 6 - - we find that this quantity is not an integer; thus, the solutions do not contain the
logarithmic term. Because the root, are complex, the coefficients 0,,. are also comple. i the solutions (30) epresent either
periodically oscillating functions when the condition w > wt, is satisfied or nonoscillating tunctions in the opposite limit. Physical
consequences of this are discussed in the next section.

Solutions for the velocity perturbations are given in the form:

ui(X, t) = [C1 Zo(.) + C,Z-(X)]e".', (31)
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where

Z1~(X) = exp In(~ x ) 12 n] 2n (32)

with 0,= 1. The reail and imaginary parts of~ are given by

Re I)-) - r ' lm (2m + I + + a,2 - 1] Re (~.m,(33)
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and
(-

-
2 - 1)12 n-

Im(4,) = _ o(- 1)-"n - 2m -I- x-2 Im(4,m), (34)
2) 2n(n 2 + t- 2 -1) m .O 2 / M

valid for all n _ .
For the magnetic field perturbations, we obtain

b2(X, t) [C 3 ZI(x) + CZ-(z)]e -'', (35)

where

Z -(X) = exp [Ii(n2 
- 1)1/2lnx] - /X 2 "'* t  (36)

n=O

with = , and

R2_) o( L 2(m+l)+n + + O-2 -I Re (021.), (37)R(0 n(n' + 0

and

(a212 ~(1r'( -3 2I~',,(8
IM l:)=-n(n 2 + - -i I)(n - 2m - 3 - 4)IM W/2. (38)

valid for all n >_ I.
As an example, we plot in Figure 5 the real part of the function Z" (eq. [31]) with real coefficients 02. (eq. [33]) for three different

parameters a The figure shows that the solutions are very sensitive to the parameter a and they have an oscillatory shape with the
amplitude increasing for increasing argument X-

d) Ordinary Point Solutions at =

The results presented in two previous subsections show that the solutions obtained at singular points P = 0 and P = 0 cannot be
extend-d to the vicinity of fP = 1. Thus, we must find the solutions at ihis point as Wl.

We transform the wave equation (9) using the new variable p = fi - I and define LA ) = N(fP). This gives

d2 L(
d- + PA) + QA, ;s)L = 0, (39)

where

PAO I +a(1+ )2 (40)

c,41 + )2 - d (41)
Q,¢ z)=[I + (I + )2lyl + t)Z"(1

Now, one sees that for both cases i = I and 2, € = 0 is the ordinary point and the method of finding the solutions (e.g., Murphy
1960) differs from that considered for the regular singular point. Note also that the solutionr found in the vicinity of the ordinary
point cannot be extended to the vicinity of the singular points ft = 0 and P = ox. The important result is, however, that the solutions
obtained at the singular points and at the ordinary point show overlapping regions of common validity and thus they may cover the
whole physical space when the appropriate matching conditions are applied (Appendix B).

Making the expansion of functions P, and Q, similar to those given by equations (12) and (13), we find that the coefficients p, and
q,. are given by

Pin = -[4po,- 1 + 3Pi(M- 1) + P0.-3] (42)

valid for all n > 3 and with Po = (I + a,)/2, rP, = - I and P,. = (5 - a,)/4; and

qn= - [6q.- -) + 7q1n.- 2) + 4qi.- 3) + q.,, 4)] , (43)

valid for all n > 4 and with q, 0 = (c, - d,)/2, q, -c, - 3di)/2, q,2 = (ci - I Id,)/4 and q,3 = 4dj.
Then, the solution can be obtained as

L,4{) = [C1 L ,() + C 2 L2 ( )]e.. (44)

where

LY) = I .. (45)
n-2
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and

L2) = + 0 pn . (46)
n-2

The expansion coefficients 4, and 0,, can be evaluated from the following recursion relation:
I +- os-2 "

; = ~ m[ 'i; inPL~n-,m- + X ['im; /,,.--,(47)
n(n - I)(.M=0

valid for all n > 2 and with coefficients ['k1o; 4',] and [0,o; 0,1] being arbitrary constants. The coefficients i. and u/ . are evaluated
with the assumptions: (0bo = 1, oi = 0) and ( io = 0, 4ll = 1), respectively. In Figure 6, we plot the solutions (45) and (46, for the
velocity perturbations for different ;r. It is shown that the results are very sensitive to the parameter a, and, even more important,
their range of validity significantly decreases for decreasing . In the limit of a -+ 0, the range approaches zero and one does not
need to be concerned with the ordinary point solutions. In addition, the solutions are not symmetric about P = 1 (see Fig. 6a and 6e
and Figs. 6b and 6f). By comparing Figures 6c and 6d, one may also find that the functions L, and L 2 for the velocity perturbations
show a 900 shift and have greatly different amplitudes(L,/L 2 ; 70).

V. SELECTION OF PHYSICAL SOLUTIONS

In the previous section, we presented the solutions to the wave equation (9) obtained in the vicinity of two singular points and one
ordinary point and discussed the importance of the parameter ;, = oj/o in determining the range of validity of the solutions. These
results are summarized in Figure 7, which shows that there is no one expansion that converges to the solution for the whole space
and that the expansions are different in the vicinity of the ordinary and regular singular points. That is, there is one general solution
that spans the whole atmosphere, but each of our three expansions converges to this solution over only a part of the atmosphere.
Even so, together these expansions constitute a full general solution because there is overlap between the adjacent regions of
convergence.

From our general solution, we seek two classes of physical solutions, the upward and downward waves excited above and below a
forcing plane. In this section, we find the upward and downward solutions in each of the three regions of convergence and show how
to match the adjacent solutions to obtain solutions that cover the whole atmosphere. We assume that the forcing plane is located at
the height in the atmosphere where P = 1 and consider the solutions in the upward arid downard directions. One should note,
however, that the point f = I is not a special point in the atmosphere; in general, the matching procedure described in Appendix B
can be applied to any location of the forcing plane and the solutions that cover the whole atmosphere are always obtained.

a) The Upward Direction
As discussed in § III, the upward waves are standing waves as a result of reflection on the density gradient. Far above the forcing

plane, the solutions are given by equations (15) and (20), which represent real functions describing standing wave solutions for any
arbitrary (but real) constants of integrations. However, as shown by equations (18) and (23), the functions Jo and 9, contain the
logarithmic term which makes these solutions infinite when P - 0. Therefore, we exclude these unphysical solutions by taking
C2 = C4 = 0. This gives the physically acceptable solutions, describing finite-amplitude wave behavior far away from the forcing
plane. in the following form: u,(fl, t) = C, fo(#)e - "w and b2(fl, t) = C3 ft()e

- ' 0', which repr:,3ent the standing wave solutions for
real constants C, and C2 . However, as shown in the previous sectin, these solutions cannot be extended down to the ordinary
point but instead roughly to the point P ; 0.5. The solutions in the region of 1 >_ P5 Z 0.5 are described by the ordinary point
solutions (eq. [44]) and are plotted in Figure 6c. The full solutions for the velocity perturbations are presented in Figure 8 for the
whole space above the forcing plane. This plot requires matching the function f o to the solutions given by equation (44). The
matching point is chosen at P5 = 0.6 and the matching procedure is described in Appendix B.

The result-, shown in Figure 8 represent standing wave solutions and, similar to the results of § Ilia, we may again separate the
solution into two parts that correspond to the evanescent and regular standing waves. In the case considered here, this height
depend.3 also on I, which means that the local critical frequency, introduced in § Ilia for the upward compression waves in a cold
plasma, must be generalized to the case of T > 0. In order to do so, we return to our original equation (9) and find that only Q,
shows a depewlence on the wave frequency w and it can be written as W2/(CO 2 + C02). To check how our results depend on this rato
of frequencies, we assume that co = co., [with co,, = (co + w) 2 ] at the forcing plane (a, = 0.707) and find that the solutions
represent evanescent standing waves (Fig. 9) for the whole space above the forcing plane. This illustrates that frequency W,, has the
same physical meaning as w, for purely transverse Alfvn waves, i.e., it separates the evanescent and regular standing wave solutions
and determines the height at which wave reflection becomes dominant (see § Ilia). Note also that for the forcing plane located at the
height where # < 1, the local critical frequency coa, reduces to w0 which is in agreement with the results of§ Ilia. Thus, we may call
the frequency Go, the local critical frequency for the upward compression waves.

b) The Downward Direction
According to the results obtained in 11 T1b and IV. the solutions for the downward waves are given by equations (31) and (35) far

away from the forcing plane and by equation (44) close to the plane. The roots of the indicial equation presented in § IVc show that
these solutions represent propagating waves when co > co and evanescent waves in the opposite case. Because the result is
independent of any critical frequencies (either co, or (o), the frequency eo, is the cutoff frequency for the downward compression
waves. This cutoff frequency is the same (global) for the whole atmosphere and in this way is different than the local critical
frequency (o., introduced in the previous subsection for the upward compression waves.
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FIG. 6.-Example basis functions L, and L 2 for the velocity solution in the vicinity of#i = I in the model atmosphere with arbitrary B. and T. In (a) and (b),L, is
plotted on the low-fl side of i = I for two different parameters a, In (c) and (d), L, and L 2 are plotted for the same a, note that as a result of small a, the solutions
are restmcted to lower f 41 than in the previous panels Finally, in (e) and (f), L, is plotted on the high-.l side for two different parameters a,.

The physically accepted (i.e., downward propagating) solutions for the downward compression waves are given by u,(X, t) =
Ct Z'(X)e - '" and bz(X, t) = C3Z('(X)e - ' which describe the propagating wave solutions for any real C, and C3 with the
coefficients 4 and 0v defined by equations (33) and (37), respectively. Note also that real parts of nonoscillatory terms in equations
(32) and (36) describe a decrease in the wave amplitudes required by the conservatton of wave energy fluxes. The solutions close to
the forcing plane (vicinity of the ordinary point) are given by equation (44) and are plotted in Figures 6e and 6f. The full solutions for
this half of the space where P3 < 1 are presented in Figure 10, which shows the propagating waves with decreasing amplitude. The
figure also demonstrates that the wavelength increases for the downward propagation (compare to Fig. 5a); however, the latter is a
superficial effect caused by using variable #? instead of X. In order to plot the full solutions for the downward propagation, we
matched the function Z'" to the solutions (44) at the point/1 = 1.3. The procedure described in Appendix B.
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FIG. 7-Schematic presentation of the full solutions to the velocity wave equation in P space

VI. DISCUSSION

In this paper, we consider the behavior of vertical compression waves in an .'othermal atmosphere with a uniform horizontal
magnetic field and present, for the first time, the full analytical solutions to the wave equations obtained for both velocity and
magnetic field perturbations. The problems discussed here have already been studied by other authors (Summers 1976; Thomas,
1982, 1983; Campos 1985, 1987); however, their results and conclusions are incomplete in light of our results. The basic conclusion
from the previous studies is that the filtering of magnetoacoustic waves through the atmosphere is a purely compressive phenome-
non and that these waves behave identically to acoustogravity waves. Here, we show, however, that in the considered model of the
atmosphere waves behave differently for upward and downward excitation and that only the downward waves behave in the way
found by Thomas and Campos.

In the steady state approach considered here, the upward waves are standing waves for any wave frequency. The standing wave
solutions can be spatially separated into two different parts: evanescent and regular standing waves. The height at which the
transition takes place can be evaluated from the condition co = 0)., with Wo, = (W2 + co2)" 2 being called the local critical frequency.
At heights where to < c, reflection on the density gradient dominates in the wave behavior. The local critical frequency (o h," hc
same physical meaning as the frequ'ency Woa for the upward Alfven waves in an isothermal atmosphere with uniform vertical
magnetic field. The critical frequency o. 1 increases with height in the atmosphere because of the increase in w, with height. Hence,
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Fia 8 -An example full standing wave solution for velocity perturbations plotted in #1 space for the t pward compression waves. The forcing plane is located at
/ = I, and the matching point is 0.6.

FIG 9 -- An example full evanescent standing wave solution for velocity perturbations plotted in the P space for the upward compression waves. The forcing
plane is located at P = I which corresponds to wave frequency being the same as the local cntical frequency u). at the forcing plane. The matching point is 04.
Because the wave is evanescent, this illustrates that cu., in the atmosphere with temperature T > 0 corresponds to o, in the cold plasma case.
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Fio. 10.-An example full propagating wave solution for velcity perturbations plotted in P space for the downward compression waves. The forcing plan, is
located at ft = 1, the parameter , = 0.01, and the matching point is 1.3.

the condition for strong reflection of a wave of frequency o is met above some height. This effect may be significant for the behavior
of the upward compression waves in a stellar atmosphere as it may lead to wave trapping in the atmosphere.

The discussion presenicti above concerus only the steady state case which is reached when all transient effects vanish and a
standing wave pattern is formed. However, before this happens one may expect to see propagating waves in the upward direction.
These waves interfere with reflected waves propagating in the downward direction and form standing waves when the reflected wave
superposes on the upward propagating wave (An et aL. 1989). For this transient phenomenon, the critical frequency co. plays the
role of a local cutoff frequency defined at the height where the forcing plane is located (say Zo). Thus, in order to excite the upward
propagating waves, the condition co > o)u(Zo) must be satisfied; otherwise, the forcing plane excites nonpropagating (evanescent)
waves. These few brief statements only signalize more general problems in the propagation of transient waves which are, however,
beyond the scope of this paper.

For the downward direction, the waves are propagating waves for those frequencies that are higher than the acoustic cutoff
frequency, co,. In this respect, magnetoacoustic waves indeed behave like acoustogravity waves but only in the downward direction
with respect to the wave source. Thus, our results confirm, but also clarify Thomas and Campos's conclusions. We should mention
that the acoustic cutoff frequency (or more precisely its ratio to the wave frequency, a) becomes also an important parameter for the
standing wave solutions obtained in the upward direction. In general, this parameter determines the domain of validity of the
ordinary point solutions and in the limit of cold plasma (P -+ 0) the domain approaches zero. Then, the singular point solutions
obtained at fP = 0 cover the whole physical space and the form of the solution is identical to the solution describing Alfv~n waves in
an isothermal atmosphere with uniform vertical magnetic field. In this limit, no cutoff frequency can be defined for the downward
direction and magnetoacoustic waves are always propagating waves.

To apply our results to solar (or stellar) physics problems, we must specify the wave source in the atmosphere. Assuming that the
major source of magnetoacoustic waves is the highly turbulent part of the solar convective zone (Musielak and Rosner 1987), then
the downward propagating waves become purely acoustic waves in deep solar layers where they can be refracted due to the
temperature gradient and may contribute to the observed solar global oscillations. These problems are beyond the scope of this
paper as the temperature gradient is not taken into account in our approach. Thus, our most important result for the solar (and
stellar) physics is that the upward propagating magnetoacoustic waves may also become trapped waves if the atmosphere at a
certain level is filled with enough nearly horizontal magnetic field. If this occurs in the photosphere, then magnetoacoustic waves
cannot transfer the energy required for the heating of solar (stellar) chromospheres and coronae. On the other hand, this trapping
effect might contribute to the observed small amplitude solar (stellar) p-mode oscillations.

We are indebted to D. H. Hathway and J. H. Thomas for their extensive comments on the manuscript of our paper. The research
has been supported by the NASA Space Plasma Physics and Solar and Heliospheric Physics Branches in the Office of Space Science
and Applications. C. H. A. has also been supported by NASA HQ Grant (NAGW-9) and Air Force Grant IAFOSR-88-0013). This
work was completed while Z. E. M. held an NRC-NASA/MSFC Research Associateship.
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APPENDIX A

LIMITS OF VALIDITY OF THOMAS'S SOLUTIONS

To show the limits of validity of the solutions obtained by Thomas (1982), we follow Nye and Thomas (1976) and, using their
notation, transform the wave equation (5) to the hypergeometric form:

x(l - x) d'w + ( - 2x) dw - 0 = 0, (Al)
d77+( dx

where w is the vertical wave amplitude, = V/V,, fl = oH/1/, and H is the density scale height. As shown by Thomas (1982),

this equation can be transformed to a form of Legendre's differential equation by making the transformation I = - 2x. This gives
2 d w  dw

(I - 2) d - 2 - 12w = 0, (A2)

and the solutions can be found as Legendre functions of zeroth order and of degree v defined by
V = _ I _± (I _ 4C1I 2 . (A3)

According to Thomas, these are full solutions to equation (A2) which means that they cover the whole physical space including the
point = I that corresponds to a very low-#l ("cold") plasma. In addition, he showed that in order to have propagating wave
solutions v must have a nonzero imaginary part, which requires 412 > I or co > on, and concluded that the cutoff frequency for
magnetoacoustic waves is not affected by the magnetic field and thereby is identical to the cutoff obtained for acoustic waves
propagating in a stratified medium.

It is shown in this paper that from a physical point of view, his conclusions are valid only for the downward (in the direction of
gravity) propagating magnetoacoustic waves and cannot apply to the upward waves. Here, we show that also from mathematical
point of view Thomas's solutions are not valid in the vicinity of the point 4 = I. This results from the theory of differential equations
(Murphy 1960) showing that all solutions to equation (A2) diverge around = I for all real constants 11

2 that cannot be given in the
form jJ 2 = v(v + 1), with v being a nonnegative integer. As shown by equation (A3), this is the case considered here.

Let us disuss these problems in detail. From mathematical point of view, equation (A2) shows singular points at 4 = I and 0
with roots of the indicial equation given by (0, 0), (0) IV, and (, i- 1, - ), respectively (Murphy 1960). The zeroth rcets always !ead to
a logarithmic term in one of the two solutions. The form of the second solution depends on whether v is a positive integer or not. In
the former case, a nonlogarithmic solution (given by a Legendre function) becomes a Legendre polynomial that converges for all
including the point 4 = I (e.g., Hochstadt 1986). However, in the latter case, Legendre functions do not converge in the vicinity of the
point = 1 and the solutions are given either by ascending powers of valid for all I < 1 (expansion about the singular point

= ± 1) or by descending powers of valid for all I I > 1 and corresponding to the singular point at 4 = m (Murphy 1960). In the
case considered here, we are interested in the descending power solutions with v being a complex quantity and find that the point

= I and its vicinity cannot be included in the solutions.
Thus, our major conclusion from this appendix is that Thomas's solutions must be given by the descending power solutions

(Legendre functions of noninteger degree) and that they do not cover the point 4 = 1 and its vicinity. Because of this restriction, the
obtained solutions describe only downward waves as to describe the upward waves the full solutions for the upward direction have
to be given; the latter are missing in Thomas's approach and therefore any procedure to construct the upward solutions using
Thomas's results is mathematically flawed.

APPENDIX B

MATCHING THE SOLUTIONS

As shown in § V, we must match the solutions given in the form of series expansions. In general, the forms of the solutions to be
matched can be written as F(x) = Cof(x) and G(x) = C1 g1(x) + C 2 g 2(x), where C0,1.2 are arbitrary constants. We assume that
Co = I and obtain the matching conditions in the form:

f(x) I.-.. = C1 g1(x)Ix = + C2 g2 (X)x=xo , (BI)

f'(x) IX=X. = C1 .'1(x)Ix=.o + C2 g'(x) 1,,=x. (B2)

where x, is the matching point and the prime (') denotes the derivative with respect to x.
Now, we may evaluate constants C, and C2 from equation (BI) and (B2). This gives

= f'(x)g2(X) - f(x)g2 (x) (B3)
g',x)g2(x) - f]( x I g(x) '

and

C2 J'(x) - C, g1(x3

g0x)
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Applying these results to the solutions obtained for the upward direction (see § V), we calculate

/'0(fl) = 2 Y n,2.fl o- (B4)
ii=0 1.0

and

I+n f - )"(116

Then, assuming fito 0.6 and using equations (BI) and (B2), we obtain C1 = -0.0197 and C2 =-2.05.

For the downward propagation, we calculate

(6 ) = COS [(Ot; 2 _ 1)1/2In (I) n + 002. (12

-fi(a;
2 

_ 1) 1/2 sin [(a; 2 _ l)112In (I ] 4' ( i l = .B7

Assuming that fl0 = 1.3, we substitute equations (BS), (B36), and (B7) into equations (BI) and (B2), and obtain C1  0.242 and
C, -2.04.
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ABSTRACT

We have studied transient propagation of Alfv6n waves in an isothermal atmosphere with constant gravity
and uniform vertical magnetic field as an initial-value problem using a time-dependent linear magnetohydro-
dynamic numerical model. The initial value approach allows us to undertake investigations not accessible to
analytic models, e.g., direct demonstration of partial reflection from the wave front propagating in an inhomo-
geneous medium, transient waves approaching the analytic solution, and direct demonstration of resonance at
certain driving frequencies.

Our results show that the Alfv6n wave transit time from the wave source to infinity is finite and the wave
exhibits continuous partial reflection which becomes total reflection as the front approaches infinity. As the
reflected waves propagate down and interfere with the upward-propagating waves, a standing wave pattern
forms in the region of the interference, and the numerical solution approaches the analytic standing wave
solution as the reflected wave superposes completely on the upward propagating wave. As soon as complete
superposition is broken, the standing wave becomes a transient propagating wave. The total reflection causes
the waves to be trapped in the cavity that extends from the wave source to infinity and in which the wave
energy is stored. We find a resonant frequency at which the amplitude of the stored wave energy increases
parabolically with time.

Our results suggest that the reflection of Alfvin waves (of sufficiently long period) from the outer corona is
an intrinsic phenomenon for any stellar atmosphere stratified by gravity and with an open magnetic field, and
that therefore such waves may be trapped in the stellar atmosphere.
Subject headings: hydromagnetics - stars: atmospheres - stars: coronae - Sun: atmosphere -

wave motions

1. INTRODUCTION tion for the whole atmosphere by matching the two different

The propagation of Alfv6n waves in the solar atmosphere wave solutions at the boundary and found a resonant pheno-
has been studied in connection with heating of the atmosphere rnenon which shows a peak in the wave energy flux above the
and solar wind acceleration. Since the solar atmosphere is boundary at certain frequencies. The resonant phenomenon
gravitationally stratified with gradients in both the tem- was believed to be due to wave reflection at the boundary and
perature and the magnetic field, the study requires abandoning was used to explain coronal heating and solar wind acceler-
the WKB approximation, especially for long-period Alfv6n ation Following Hollweg (1972), numerous authors (Hollweg
waves. The equation governing the wave propagation in a rea- 1978, 1984; Leroy 1980; Leroy and Schwartz 1982; Schwartz
listic solar atmosphere is extremely complicated to solve ana- and Leroy 1982; Leer, Holzer, and FIA 1982; Schwartz, Cally,
lytically. Thus, for analytical studies, the problem has generally and Bel 1984; Zugzda and Locans 1982; Rosner, Low, and
been simplified by assuming a uniform magnetic field, uniform Holzer 1986) studied Alfv6n wave propagation in the solar
gravity, and a one-dimensional atmosphere which varies only atmosphere by dividing it into several layers. However, the
along the direction parallel to gravity. Linear theory leads to a interpretation of the resonant phenomenon varied. Zugzuda
second-order differential equation solved for the first time by and Locans (1982) claimed that the resonant phenomenon is
Ferraro (1954) and Ferraro and Plumpton (1958). With the due to an error in the procedure, and Leer, Holzer, and FIA
assumption of a steady sinusoidal time dependence. they (1982) emphasize that the resonant phenomenon cannot be
obtained a standing wave solution, which implies no wave (and considered as a mechanism of cormnal heating and solar wind
also no energy) propagation through the medium. acceleration. In addition, the approach itself deserves

In order to avoid this difficulty, Hollweg (1972) divided the comment. First, imposing an artificial upper boundary for the
atmosphere into two parts that are characterized by different transition region exaggerates the reflectivity from the tran-
scale heights. He imposed a boundary interface (transition rition region If we solve the wave equation with a smoothly
region) which divides the atmosphere into the chromosphere varying layer, we may find a lower reflectivity. Finally, the
and the corona. He specified ascending and descending wave assumption of a uniform atmosphere above the upper bound-
solutions below the interface boundary, but only an ascending ary neglects the propagation of Alfv6n waves in the gravita-
wave solution above the boundary. He obtained the wave solu- tionally stratified upper corona. We therefore believe that
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Alfv~n wave propagation in the upper corona has not yet been The explicit form of the argument of the Bessel function, CO/WA,
properly treated. is

Because of the importance of Alfv6n wave propagation
through the transition region into the corona for coronal -o 0! e -(I2Z

heating and solar wind acceleration we need to study such oA WOA
wave propagation in a more realistic solar atmosphere with a where COOA= V0A/2H 9 .
realistic corona, transition region, and chromosphere. Note that for any real constants AI and A 2 (or A 3 and A4)
However, before we consider this problem, we must first under- the solution (3) represents a standing wave solution (see § Ila).
stand how Alfvn waves propagate in the corona. Since an This solution has been extensively studied in the literature
analytic study with a steady sinusoidal time dependence pro- (Hollweg 1978; Leroy 1980; Leer, Holzer, and FIA 1982;
duces only a standing wave solution, we use a time-dependent Rosner, Low, and Holzer 1986) in the context of propagating
magnetohydrodynamic (MHD) numerical simulation methodto gt mre pysial nsigt ito te wve ehavor.The and reflecting Alfv~n waves. It has been shown that there existsto get more physical insight into the wave behavior. The a characteristic height for a given o, which separates the solu-
numerical calculation enables us to study transient MHD atisti hi fortivn W, whch pate thnolu-
wave propagation through an initially unperturbed medium tion into two parts: sinusoidal (o ; woJ and nonoscillating

and to see how the wave character (i.e., wavelength, amplitude, ( : o) wave solutions (Campos 1987).

propagation speed, etc.) vary in response to the nonuniform
medium. We also study how the propagating wave is contin- a) Ascending Propagation
uously reflected and how the wave undergoes total reflection as In this section we will consider why the analytic solution
it propagates to infinity. Finally, for better understanding of shows a standing rather than a traveling wave and will
observations, it is important to study transient wave propaga- comment on previous work attempting to avoid the standing
tion, since the wave drivers in the Sun may not have a long wave solution. First of all, however, we must specify the region
e'iough lifetime to reach a steady state. of wave generation and the direction of the wave propagation

In this paper we restrict our attention to Alfvn waves pro- in order to check whether the solution (3) diverges as z -.+ co. If
pagating in an isothermal and stratified atmosphere with con- we assume that the wave is generated at z = 0 and propagates
stant gravity and uniform vertical magnetic field. We will first to z = oo, this leads to Yo(COnA)t- oo as the argument
review published analytic solutions and then present the approaches zero, aud the conditiun A 2 = 0 is necessary to
numerical results. prevent infinite wave energy infnitely f~r from tho source,

which is physically unreasonable. With A2 = 0 and A1
It. REVIEW OF ANALYTIC SOLUTIONS nonzero, equation (3) describes a standing wave solution.

As shown first by Ferraro and Plumpton (1958), full analytic For an isothermal atmosphere with constant gravity, plasma
solutions to the linearized Alfv6n wave equation can be given pressure and density decrease exponentially, as shown by
in terms of Bessel functions. However, in order to obtain these equation (1). Hence the Alfvn wave velocity increases expo-
solutions, a simple model has to be assumed; namely, one must nentially with height, and the wave reaches infinity in a finite
consider an isothermal and stratified medium with constant time. Also, it eventually becomes totally reflected because the
gravity and with uniform vertical background magnetic field. wavelength becomes infinitely longer than the density scale
Under these conditions, the plasma pressure and density can height. The Alfvin wave transit time to infinity can easily be
be given in the following form: calculated from equation (2), giving

p=poe- * , p=poe -A (1) t = -2t^, (5)

where po and Po are the values of density and pressure at z = 0, J VA
respectively; note that we are using the Cartesian system with where tA = H/VoA .
x the horizontal and z the vertical coordinate. The Alfv~n Hence, physically, there is interference between the
velocity is given by ascending and the reflected descending wave, and this consti-

V = VOA e /A2)Iz (2) tutes the standing wave expressed by equation (3) with A2 = 0.
In other words, the standing wave solution of Ferraro and

where VOA is the Alfvn speed at z = 0 and A is defined as the Plumpton (1958) is unavoidable under the assumption of
inverse of the gravitational scale height, Hg = RT/g. Here R is uniform gravity, uniform magnetic field, and steady sinusoidal
the gas constant, T is the temperature, and g is gravitational time dependence.
acceleration. Then, after Ferraro and Plumpton (1958), Previous authors attempted to avoid the standing wave sol-
assuming steady sinusoidal time dependence, the general solu- ution by dividing the atmosphere into two parts--corona and
tion for the velocity and magnetic perturbations V and B, is chromosphere-and by specifying the outward propagating
given by solution above the interface boundary (transition region);

Vx. , t)= [A1 Jo(I/COA) + A2 YO(w/JOA)]e wt, Hollweg (1972) and Zugzda and Locans (1982) specify a
:V = p112 Hankel function representing a wave propagating from a wave

B (z, :) 0 p 12[A3Jl(o/CA) + A. Y(Cw/w0A)]e ' w. (3) source (see eq. [9] for the Hankel function) and Schwartz,
Here, J0 (J,) and Yo (Y) are the Bessel functions of the first Cally, and Bel (1984) and Leer, Holzer, and FIA (1986) impose

and second kind of order zero (first), respectively. A1, A2, A3, an ascending plane wave solution above the interface bound-
and A4 are constants to be determined by the boundary condi- ary. The imposition of an ascending plane wave solution
tions, and COA is defined by implies that the density scale height is infinite above the inter-

face boundary, i.e., the reflection due to the finite density scale
WA = VA12HO. (4) height is neglected. In addition, the specification of the Hankel
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function might not properly describe wave propagation in the written in dimensionless form by normalizing velocity with VOA

upper corona because the function diverges as z - o. of equation (2), and by normalizing magnetic field and pressure
In order to study the propagation of Alfv6n waves in the with their values at z = 0. The height is normalized by density

corona, we will employ two approaches: (1) Use a time- scale height H. and time t by tA of equation (5). We assume that
dependent MHD simulation method to study wave propaga- gravity is constant and the magnetic field is uniform and is
tion to infinity, wave reflection due to the density gradient, and parallel to gravity, and that the wave propagates only along
interference between the outgoing and incoming waves. (2) the field lines. Since the Alfv6n velocity increases exponentially
Abandon constant gravity and study the wave propagation in as the wave propagates upward, we will violate the Courant-
spherical geometry with gravity g - l/r 2. In this paper, we give Friedrichs-Lewy (CFL) numerical stability condition unless we
results from the first approach. We plan to deal with the increase the grid size exponentially. For this reason, we trans-
second problem in a separate paper. form the coordinates from z to q, where q is defined by

b) Descending Propagation I = e -Z/2 . (7)
The wave solution, equation (3), is also valid for descending Here, A becomes unity for the equations in dimensionless form.

wave propagation, but we have to determine the coefficients A I At the lower boundary, we impose an oscillatory transverse
and A 2 from the boundary conditions. If we assume that the velocity perturbation with
wave is generated at z = 0 and propagates to z = - Co, the
asymptotic solution of the Bessel functions, Jo( ) and Yo( ), for v. = 0.01 cos cot (8)

-D/WA -+ co (when z -- - oo) becomes finite. How can we which excites an Alfv~n wave, and specify that the perturbed
then determine A I and A2 ? We believe that the answer lies in a magnetic field is zero at the upper boundary-which is physi-
physical, rather than mathematical, argument. If the descend- cally reasonable because the magnetic field behaves as a rigid
ing Alfv~n wave transit time to z = - o is infinite, the wave is bar because of finite magnetic field strength and zero density at
a traveling wave with one of A, and A2 being real and the )I = 0. The transformation presented by equation (7) has
other imaginary. We can calulate the transit time of a descend- several advantages. First, the uniform grid size Al, since Az
ing wave from equation (5) by integrating from z = 0 to increases exponentially and the transit time of the Alfv6n wave
z = - o and can easily show that the transit time is infinity, across Az is constant for the exponentially increasing Alfv6n
implying a traveling wave. The wavelength of a descending speed with height, we can avoid the numerical instability.
wave decreases exponentially, and the wave can be approx- Second, for upward propagation we can cover 0 < z < co in
imate' tc, a WKB wave. Thus, the propagation of descending the computing domain and study in detail wave reflection fiom
waves will not be considered further in this paper. infinity. Third, we can impose nonartificial boundary condi-

PROPAGATION tions at z = o. The following results are all based on the 17
I. TRANSIENT WAVE PROcoordinates.

To study transient wave propagation, we solve the time-
dependent one-dimensional linearized ideal MHD equations a) Ascending Wave Propagation
numerically for an oscillatory transverse perturbation at the Figures la and lb show the computed upward-propagating
lower boundary (An, Suess, and Wu, 1989). The equations are Alfv~n wave with frequency co = 4n. The perturbation ampli-

1.0 1 1.0 1 1
t- 1.5 , t-2.0 a,

.6 ' ' .6 ,a, ,

.4 .4 o , ,

.2 '2 S * a

0 0

2 2

-.4 -a.4 a

-10 , 005

-. 6 , , i
a .* '*.

0 0.25 J5 0_7 1.0 0 0.25 0.5 0.75 1.0
11 "1

(At) (b)

FIG. I.-Upward transient Alfv~n wave propagation wiih frequency co = 47t in an atmosphere stratified by uniform gravity and having a uniform vertical
magnetic field The solid lane is for the velocity, and the dashed line is for the perturbation magnetic field amplitude at (a) I= 15 and (b) I= 2 0 The horizontal axis
stands for the height with q7 - 0 and PI = I corresponding to : = cc and z = 0, respectively The vertical axis represents the amplitudes of velocity and magnetic field
normalized4 by the maximum value at each time The wiggles an the first half-wavelength are due to the abrupt initiation of the wave in our simulation.
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tude is finite at t 0 and oscillates with time. Because of the 1.0
finite amplitude at t = 0, there is a noticeable transient wave (a)
front followed by a smooth oscillatory wave train. Since we t 2.890
give the perturbation at z = 0, the wave propagates from q = 1
to q = 0. The solid and dashed lines represent the velocity and .6
magnetic field perturbations, respectively. Before the waves .4
reach q = 0 (i.e., z = oo) the velocity and magnetic field pertur- Vx
bations propagate with a 1800 phase difference. At t = 2 the .2
magnetic wave reaches tj = 0 as predicted by equation (5).

(Note that t is normalized by tA in our dimensionless equa- 0 
tions.)

Figures 2a, 2b, and 2c show the velocity wave propagation at -.2
= 2.890, 4.00, and 4.99, respectively, after the initial transient

front reflects from r/= 0. In each figure, the solid line is the -.4 1 1 1
analytic standing wave solution, and the dotted line is the 0 0.25 0.5 0.75 1.0
numerical traveling wave solution. The amplitude is normal- 11
ized by the maximum value at each time. At t = 2.890, the
initial transient has reflected back to I ; 0.4, and the train is a
superposition of reflecting and ascending waves forming the
analytic standing wave solution between ?I =0 andi ?I 0.4. At 1CI T
0.4 q r/< 1.0 the ascending waves propagate upward (toward .8 (b)
?I = 0) without being interfered with by the reflecting waves. It = 4.000
which have not yet reached this region. At t = 4.0 the initial .6
transient front returns to q = 1, forming a complete super-
position with the ascending wave. and the whole region is well .. ,
represented by the analytic standing wave solution. As the Vxreflected wave reaches ?, = I, it is reflected and interacts with .2
the oscillating wave source. A fraction of the energy of the
incident wave is absorbed by the wav iuu'ce if there is a phase

difference between the two. At t = 4.99, the initial transient
front has reflected from I = 1 and propagated upward to reach -.
I = 0.5. Because of the initial transient wave train, complete
superposition is broken and the numerical solution becomes a -.4

transient propagating wave, departing from the analytic stand- 0 0.25 0.5 0.75 1.0
ing wave solution at 0.5 51 1. Our numerical result shows T1

that complete superposition occurs at t = 4, 8, 12, and so forth,
at which times the numerical solution reproduces the analytic
standing wave solution. When complete superposition is 1.0 I

broken at other intermediate times, the numerical solution is
simply a transient propagating solution. Figure 3 shows that .8 (c)
the magnetic perturbation also approaches the analytic stand- t 4.990
ing wave solution as the reflected initial transient front returns .6
to tq = I and forms a complete superposition on the ascending
wave. The solid line is the analytic standing wave solution for Vx4
the perturbed magnetic field (with A, = 0 in eq. [3]), and the
dotted line is the numerical wave solution. The wave is also a .2
transient propagating wave when complete superposition is
broken at t > 4. V 1 V

b) Wave Reflection .2"
i) Partial Reflection .4 I

0 0.25 0.5 0.75 1.0
Much effort has been devoted to the calculation of the reflec- 0

tion coefficient of an Alfv~n wave propagating through a non-
uniform medium. A commonly used method is to divide the Fir. 2.-The transient propagating wave approaches and departs from the
atmosphere into several layers and apply the matching bound- analytic standing wae solution as the transient wave train interferes com-
ary conditions at each layer (e.g., Hollweg 1978). From analytic pletely with the ascending wave and breaks the complte superposition. The

solid curve is the analytic standing wave solution, and the dashed curves are
studies, many authors (Leroy 1980; Leer, Holzer, and FIA the computed waves at (a) t = 2.890. (b) t = 4.0, and (c) t = 4.99. The anpli.
1982; Rosner, Low, and Holzei" 1986) have suggested that there tudes are normalized by the maximum value at each time here and in Fig. 3. At
is continuous partial reflection for waves with wavelength t = 4.0 the initial transient front returns to ;7 = I, forming a complete super.
longer than the density scale height. Since the analytic solution position with the ascending wave, and the whole region becomes the analytic

standing wave solution, At t = 4,99 the initial transient front reflects from
with steady state sinusoidal time dependence, e"', holds only q = I to l - 0.5 and breaks the complete superposition, showing a transient
for t >> I and does not describe the wave propagation through propagating wave in the region,

108



No. 1, 1989 TRANSIENT ALFVtN WAVES IN ISOTHERMAL ATMOSPHERE

Sthe changes at t = 1.90, while at t = 1.40 the magnetic energy
t.,0 of the sixth increases over the fifth by 0.6% and the kinetic

a .energy decreases by 0.5%.
To interpret these results, we ask the following questions:

Are the oscillatory changes in magnetic and kinetic energy due
to partial reflection? If so, then why does the oscillatory behav-

4 ior of the magnetic energy have 1800 phase difference from the
kinetic energy?

As the wave front passes through heights where the wave-
2 length is shorter than the density scale height, the wave sees the

o atmosphere as a nearly uniform medium and undergoes negli-
0 ogible reflection. As the wave front moves to the height where

the wavelength is longer than the scale height, the wave sees
.2 the medium as nonuniform, and partial reflection occurs. At

t = 1.45, the wavelength of the wave front with o) = 41r is about

.4 

!

.6 (x106)
*6

OAS - I-ISO

... .... l-40
•1 II 0.64 -

0 025 05 075 10

FIG. 3.-The magnetic wave also approaches the analytic standing wave 0. "
solution as the initial wave front reflects back to I = I and interferes with the
ascending wave at t = 4. The solid curve ,m the analytic solution, and the
dashed curve is the numerical solution. At t = 4.99 the magnetic wave also
shows a transient propagating wave in 0.5 s q :. . aes

an undisturbed medium, the continuous partial reflection from _511__ _ _J

a propagating wave cannot be properly studied by the analytic 7 6 4 3 2 1
approach. Here we study how energy is reflected as the wave Ca)
propagates to z = oo by calculating the magnetic and kinetic
energy in every half-wavelength at specific intervals in time. If CI
there is no reflection, the energy in each half-wavelength (xlO)
should be the same. Figures 4a and 4b show the kinetic and
magnetic energy in each half-wavelength for t = 1.40, t = 1.65, 064

and t = 1.90, which are a half-period apart for the frequency
o = 4n. The vertical axis is the magnitude of the energy, and
the horizontal axis represents the position of each wavelength 0m_
at a specific time interval. For example, for t = 1.65, 1 stands
for the position of the first half-wavelength and 6 means the
position of the next to last half-wavelength counted from n = I 011
(or z = 0). The energy of the last half-wavelength is not con-
sidered here because it is strongly disturbed by the transient
effect of the wave front. Since the times are a half-period apart, os- W.
the position of a half-wavelength designated by a number on
the horizontal axis is the same for the three different times.
Figures 4a and 4b show the oscillatory change of the kinetic _ _ _ _ ,_ ,_ ,_ _

and magnetic energy between adjacent half-wavelengths which 7 s 3 4 2 1
is superposed on the gradual decrease of the energy from the
first to the last half-wavelength. The oscillatory change of the FIG. 4.-Variation of (a) magnetic and (b) kinetic wave energy in each
energy between adjacent half-wavelengths is amplified as the half-wavelength, for different times, due to continuous reflection. The numbers
wave front moves closer to q = 0, as we see by comparing the on the horizontal axis stand for the position of each half-wavelength at each

time, with a higher number designating a half-wavelength closer to the waveenergy change at 1.4 and t = 1.65. At t = 1.9, the oscil- front, which is propagating from right to left. The vertical axis stands for the
latory change of the energy is noticeable even between the first magnitude of the energy in dimensionless form. These plots show that because
and second half-wavelengths, and the energy difference of continuous reflection the energy difference between the sixth and seventh
between the seventh and the sixth is significant: a 3.6% half-wavelengths increases significantly after t = 1.90. The magnetic energy
decrease for kinetic energy and a 7.2% increase for magnetic increase and the kinetic energy decrease in the seventh compared with th: sixth

half-wavelength are due to the fact that the medium at the wave front behaves
energy. At t = 1.98, the kinetic and magnetic energy changes approximately as a rigid boundary for the ...agnetic wave but as a free bound-
between the seventh and the sixth are about twice as large as ary for the velocity wave.
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1.8 times the density scale height and noticeable partial reflec- 13th half-wavelengths for co = 8n is 2%. which is about half the
tion may occur. We therefore believe that the kinetic and mag- difference for a) = 41r. Second, the oscillatory change of the
netic energy differences between the fourth and fifth energy for co = 4n is larger than for co = 8t; for (o = 41r there is
half-wavelengths at t = 1.45 are due to the partial reflection. a noticeable oscillatory change above the third half-
We note that the increment of the magnetic energy and the wavelength, while for co = 8n the noticeable change occur,
decrement of the kinetic energy of the fifth over the fourth are above the ninth which corresponds to the fifth for co = 41r. The
due to different behaviors in the perturbed magnetic field, Bx, lower oscillatory change for co = Si is due to less reflection.
and velocity, v., near the wave front. Since the magnetic field However, the continuous decrease of the energy from the first
strength is uniform, while the plasma density decreases expo- to the last half-wavelength is more significant for to = 8n than
nentially with height, the magnetic tension force becomes for w = 47. If the decrease were due to partial reflection, then
larger than the inertia force as the wave front propagates the result would contradict our physical argument that a
upward. Thus, the medium at the wave front eventually longer wavelength undergoes more reflection. For shorter
behaves as a rigid boundary for the magnetic field but as a free wavelengths, the wave energy damping due to the artificial
boundary for the velocity. This causes the reflected magnetic viscosity is higher, causing more rapid decrease of the energy
wave to have a 1800 phase difference from the upgoing mag- with height. In order to further confirm the effect of artificial
netic wave, and the reflected velocity wave to have the same viscosity, we double the magnifitude of the viscosity coefficient
phase as the upgoing velocity wave. Since the fifth half- for o = 8n. Figure 5 shows that the oscillatory changes for
wavelength for t = 1.4, the sixth for t = 1.65, and the seventh v = 0.0002 and v = 0.0004 are nearly identical, but the contin-
for t = 1.90 are just behind the wave front and have the wave uous decrease of the energy from the first to the last half-
amplitude of opposite sign to the amplitude of the front, the wavelength for v = 0.0004 is more significant than for
reflection from the front causes the magnetic amplitude (and so v = 0.0002. This results confirms that the continuous decrease
the magnetic energy) to increase and the velocity amplitude of the energy from the first to the last half-wavelength is due to
(and so the kinetic energy) to decrease at the half-wavelength viscous dissipation, and the continuous reflection shows up as
next to the front. As the reflected wave propagates downward, the oscillatory change of the energy superposed on the contin-
it increases and decreases the amplitudes of lower half- uous decrease due to the artificial viscosity.
wavelengths alternately, causing the oscillatory change of
kinetic and magnetic energy. At t = 1.9, the wave front passes i,) Total Reflecton and Interference
q, = 0.04, at which point O/COA = 1 and the energy differences In the previous section, we found that the ascending waves
between the seventh and the sixth half-wavelengths become undergo total rmflection, causing them to be trapoed in a cavity
significant ror 0o/WOA < 1, the Bessel function Jo(O/oA) has no extending from infinity to the wave source. In this section we
zero points, so there are no nodes between q = 0 and 1. Note will study the transient nature of wave trapping and inter-
that q, corresponds to a finite height z, above which the ference for various wave frequencies. This study is motivated
plasmas oscillate in the same phase. Thus, the physical by the results of Hollweg (1972, 1978) showing a resonant
meaning of i/, for transient wave propagation is as follows: As phenomenon for certain wave frequencies, those foi which
the wave front passes over i/, the wavelength becomes more Jo(oW/CA) = 0. Since the atmosphere is essentially a cavity with
.ian 10 times longer than the density scale height, resulting in upper boundary at I = 0, similar resonant phenom-na may

strong continuous partial reflection. This leads to total reflec- occur in our numerical solutions for the resonant frequencies
tion of the upward wave train and sets up a nonoscillating found by Hollweg.
standing wave above the critical height. By comparing the First, we generate waves with frequency to = 6.65 for which
energy differences between the sixth and the seventh half- JI(CoiWA) = 0 at z = 0. With this frequency Jo(o/wA) at z = 0
wavelengths for t = 1.90 and t = 1.98, we find that reflection has a local maximum value. Figure 6a shows the time variation
increases rapidly once the wave front passes over q,. As the of velocity amplitude at ? = 0.5. The figure shows greatly
wave front reaches infinity, the wavelength becomes infinite reduced amplitude between r = 7 and t = 9. The magnetic field
and partial reflection becomes total reflection, amplitude shows a time variation similar to that of the ,veloc-

Since we include artificial viscosity in our numerical model, ity. We internret the strong transient variation of the ampli-
the eiergy difference between each adjacent half.wavelength tudes to be due to destructive interference between the upward
may be due to viscosity rather than to partial reflection. In and reflected downward waves. Figure 6b presents the time
order to understand the effect of viscosity on the energy differ- variation of the kinetic energy integrated over the whole pro-
ences. we vary the wave frequency and viscosity coefficient. pagation region, demonstrating severe destructive interference
Figure 5 shows the kinetic energy change at each half- between t = 4 and t = 8.
wavelength at t = 1.9. The dotted line is for o = 4n, and the Next, we generate the wave with frequency o = 7.45 for
solid lines are for w = 87r. The dimensionless artificial viscosity which t c zeroth-order Bessel function, the solution of per-
coefficient. v, is specified in the figure. The left axis shows the turbed velocity (eq. [3] with A2 = 0), becomes zero at ;7 = I (or
wave energy for co = 8n and the right axis shows the energy for z = 0). Figure 7a shows that whenever the ascending wave
w = 4n. Since the wavelength for w = 8n is half the wavelength interacts with the reflected descending wave, the velocity
for (w = 4n, the first and second half-wavelengths of w = 8r amplitude at q7 = 0.5 increases approximately linearly with
have the same position as the first half-wavelengths of o = 8n time, implying that there is always constructive interference.
have the same position as the first half-wavelength of w = 47r. The magnetic perturbation shows a similar tendency. The con-
In order to take this into account, the lower horizontal axis tinuous constructive interference at this frequency is dramat-
shows the position of each half-wavelength for o = 8n, while ically seen in Figure 7b, which shows the time variation of
the upper horizontal axis is for to = 4n. By comparing the kinetic energy integrated over the whole propagation region.
results for co = 4n and 8n and v = 0.0002, we can see the fol- The figure shows that the amplitude of the kinetic energy
lowing. First, the energy difference between the 14th and the increases with the square of time; all the input energy is stored
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FIG. 5.-Change of kinettc energy in each half-wavelength at t= 1.9 for different frequencies and different magnitudes of artificial viscosity. The dashed line is for
w = 4nr. and the solid lines are for wi = 8x. The two solid lines are distinguished by different rmagnitudes of the artificial viscosity coefficient v. The upper solid curve
has v = 0.0002 (the same as for the dotted curve), and the lower one has v = 0.0004. The vertical axis represents the magnitude of kinetic energy, and the horizontal
axis represents the posniton oh.... half-wavelerigh. !n order to make a close comparison between w = 4x an w = 8x, we specify different scales on the right o
wi = 4n) and the left (for ca = 8n) vertical axes, and upper (for ca = 4n) and lower (for o) = 8n) horizontal axes. The effect of partial reflection is represented by the
oscillatory change in the energy which is superposed on the continuous decrease of the energy due to artificial viscosity.
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FIG. 6.--la) Time vanation of the velocity (v,) at q/= 0.5 with wave frequency wj = 6.65. at which JI(ciIwA) 0 0. Apparently because of destructive interference
between the ascending and descending waves, the amplitude shows strong modulation. The vertical axis is the amplitude of the velocity, and the horizontal axis is
time. (b) Time variation of kinetic energy integrated over 0 :5 q : 1. Because of destructive interference, the energy waves and waves with time.

111



AN ET AL. Vol. 345

06 1.2 ,

(x 10 3 )

04 1.0

02-08

vX 0 K.E.
0.6

02
0.4

0.2
.06

S0. ..... I , . ...

0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) (b)

FIG. 7.--Aa} Time variation of velocity amplitude at q = 0.5 for frequency w = 7.45 at which Jo(w/lw) i0 . Apparently because of constructive interference, the
amplitude increases nearly linearly with time. (b) Time variauon of kinetic energy integrated from the wave source to infinity with frequency w = 7.45. Because of
constructive interference (or resonance), the amplitude increases as the square of time.

in the cavity. This continuous constructive interference resem- Ferraro and Plumpton's solution is a standing wave solution,
bles the resonant phenomenon found by Hollweg (1972, 1978), which seems unrealistic for the solar atmosphere. Many
who showed that the peak of transmitted energy density is at attempts have been made to avoid the standing wave solution
th trequencies for which JO(/OWA) = 0 at r = 1. Thc ampli- and obtain a realistic traveling wave by dividing the atmo-
tude of magnetic energy increases as the kinetic energy, but sphere into two parts, corona and chromosphere, and by
with a 1800 phase difference. specifying an ascending traveling wave solution in the corona.

We believe that the resonant phenomenon found in this Here, we have concentrated on understanding the wave propa-
study is essentially the same as that found by Hollweg (1972, gation by reviewing the analytic solutions anG physically inter-
1978) studying Alfv6n wave propagation from the chromo- preting them by studying the wave propagation using a
sphere into the corona. For cu = 7.45 the amplitude of the time-dependent MHD numerical model.
analytic solution of velocity a, z = 0 is nearly ,ero, but we We find that the analytic standing wave solution of Ferraro
force the velocity at the wave source to oscillate with a finite and Plumptun with steady sinusoidal oscillations is unavoid-
amplitude. As the initial wave front reflects back and interferes able for an isothermal atmosphere with constant gravity and
with the ascending wave, the solution becomes the analytic uniform vertical magnetic field. This atmosphere has an expo-
standing wave shrwn iI Figure 2. A characteristic of the analy- nentially decreasing plasma density and an exponentially
tic standing wave solution is that if we increase the amplitude increasing Alfv6n speed. fhis results in finite transit time of the
at z = 0, the amplitude above z = 0 increases proportionately. Alfv~n wave to infinity and total reflection. The steady sinus-
However, the amplitude of the propagating wave does not oidal time dependence for the perturbed quantities in the
immediately go to the analytic value (about 101 times the analytic study is valid only after sufficient time has elapsed for
initial amplitude) because it takes time for the perturbation to the outgoing and reflecting waves to interact to form a steady
reach all heights. During that time, the ascending and descend- standing wave. All attempts to avoid the standing wave solu-
ing waves interfere constructively to increase the amplitude tion have resorted to specifying upward-propagating waves at
continuously. It will take about 2 x 10' wave periods for our the upper boundary or a discontinuous atmosphere which sets
numerical peak to reach the analytic value. On the other hand, the character of the solutions. We, as an alternative, studied the
for co = 6.65 the amplitude of the analytic solution for velocity wave propagation in a continuous atmosphere by using a time-
is a local maximum at z = 0. As the wave source is forced to dependent linear MHD numerical model.
oscillate, the amplitude at z = 0 decreases below the analytic Our numerical results reveal that as the wave front
value, which decreas the amplitude of the analytic solution approaches infinity, partial reflection due tv the density gra-
above z = 0 proportionately. Again, the amplitude of the tran- dient continuously increases. As the wave front reaches infinity,
sient wave does not decrease to the analytic value immediately, the reflection becomes total. The transient wave front reflects
The ascending and reflected descending waves continuously back, leaving a steady standing wave train behind. We have
interfere with each other to decrease the amplitude, compared the standing wave train with the analytic solution

and found excellent agreement. We found a noticeable partial
IV. DISCUSSION AND CONCLUSION reflection as the wave front approaches the height at which

We have studied Alfv~n wave propagation in an isothermal CO < w,^ and above which the plasma oscillates in the same
and stratified atmosphere with constant gravity and uniform phase. In other words, there is noticeable continuous reflection
vertical magnetic field. The problem dates back to Ferraro and when the wave!ength is longer than density scale height
Plumpton (1958), but there has been confusion because because the wave then sees the atmosphere as a rapidly chang-
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ing medium. When the wave front approaches infinity, the ance, even though their approach is similar to Hollweg's for
wavelength becomes infinite and the wave sees the medium as the calculation of the reflectivity.
a discontinuity, causing total reflection. The total reflection We have demonstrated the accuracy of our numerical simu-
causes the waves to be trapped in a cavity, extending from the lation method by its close reproduction of the analytic solu-
wave source to infinity, in which the wave energy is stored. We tions for vertical Alfv~n waves in an isothermal atmosphere
find that there is a resonant frequency at which the stored with constant gravity. This means that the same simulation
energy increases with the square of time. We suggest that the method will be valid for study of MHD wave propagation in
resonant phenomenon in this study is the same as found by more realistic stellar atmospheres.
Hollweg (1972, 1978). who calculated the peak of energy flux at Recently, we have studied fast-mode wave propagation in an
the , ,sonant frequency to be several orders of magnitude atmosphere stratified by a uniform gravity and magnetized by
4,gner than the value at a nonresonant frequency. It will take a uniform horizontal magnetic field (Musielak et al. 1989) ana-
about 2 x l0' wave periods for our numerical peak to reach lytically. The results demonstrated that the ascending fast
the analytic value, by which time our linear approximation mode also undergoes reflection in the corona, implying that
breaks down. Our recent study for nonlinear Alfv6n wave pro- the reflection is a common phenomenon for both fast and
pagations shows that the resonant amplitude grows to about Alfv6n waves propagating upward in a stratified stellar atmo-
20 times the initial value and becomes saturated and transient sphere. Even though the density of a real atmosphere might
propagation continues. The study implies that the resonance not decrease to zero at infinity, as for the uniform-gravity case,
should be treated nonlinearly and is physically important only the density stratification can cause the wavelength of the waves
when the lifetime of the wave source is long enough. to be much longer than the density scale height at some loca-

Zugzda and Locans (1982) suggested that there would be no tion in the corona. Then, the waves begin undergoing contin-
resonance peak in transmitted energy if we specified unit wave uous partial reflection as they propagate above that height.
energy flux rather than unit velocity; at a large reflection coeffi- This partial reflection is totally neglected by authors imposing
cient in the lower atmospheric layers, there arise nearly stand- only outgoing wave solutions at the upper boundary. We
ing waves with a node at the lower boundary (z = 0) for believe that the possibility of partial reflection of the MHD
resonance frequencies. Zugzda and LocanF claimed that if we waves in the corona may be important for coronal heating and
give a forced oscillation with a unit velocit';, the velocity above solar wind acceleration.
the lower boundary will be proportionattly high, but with a
unit cnergy flux the velocity will not be hig.. However, we note
that the amolitude at the lower boundary is finite, if not unity, We are grateful to D. H. Hathaway and I V ).,Itlweg fnr
for the unit inergy flux. As long as the velocity amplitude at the valuable comments oi this paper. The research has been sup-
lower boundary is finite, no matter how small it is, the velocity ported by NASA HQ grant NAGW-9 and Air Force grant
amplitude above the boundary will approach the analytic AFOSR-88-0013 (C. H. A.) and by the NASA Space Plasma
value of a resonance peak for the resonance frequencies. In Physics and Solar and Heliospheric Physics Branches in the
other words, we will find resonance peaks of Hollweg even if Office of Space Science and Applications. This work was com-
we specify unit energy flux rather than unit velocity. It is not pleted while Z. E. M. held a NRC-NASA/MSFC Research
clear why Zugzda and Locans (1982) did not find the reson- Associateship.
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IV. SOLAR INTERPLANETARY COUPLING STUDIES

There were three papers published; two papers in Solar Physics dealing

with the initiation of solar disturbances propagating into interplanetary

environment and one paper in J. of Geophysical Research describing the

interactions of the propagating plasmoid and solar wind in three-dimensions.

Shear-Induced Instability and Arch Filament Eruption:
An MHD Numerical Simulation in Solar Phys., (to appear)

1991.

Model Calculations of Rising Motions of Prominince Loops

in Solar Phys. (to appear) 1991.

A Time-dependent, Three-dimensional, MHD Numerical Study
of Interplanetary Magnetic Draping Around Plasmoid in

the Solar Wind in J. of Geophysical Res. (to appear)

1991.
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ABSTRACT

We investigate, via a two-dimensional (nonplanar) MHD

simulation, a situation wherein a bipolar magnetic field embedded

in a stratified solar atmosphere (i.e. arch-filament-like

structure) undergoes symmetrical shear motion at the footpoints.

It was found that the vertical plasma flow velocities grow

exponentially leading to a new type of global MHD-instability

that could be characterized as a "Dynamic Shearing Instability",

with a growth rate of about -8 VAa, where VA is the average

Alfven speed and a-' is the characteristic length scale. The

growth rate grows almost linearly until it reaches the same order

of magnitude as the Alfven speed. Then a nonlinear MHD

instability occurs beyond thi3 point. This aimulation indicates

the following physical consequences: the central loops are

pinched by opposing Lorentz forces, and the outer closed loops

stretch upward with the vertically-rising mass flow. This

instability may apply to arch filament eruptions (AFE) and

coronal mass ejections (CMEs).

To illustrate the nonlinear dynamical shearing instability,

a numerical example is given for three different values of the

plasma beta that span several orders of magnitude. The numerical

results were analyzed using a linearized asymptotic approach in

which an analytical approximate solution for velocity growth is

presented. Finally, this theoretical model is applied to

describe the arch filament eruption as well as CMEs.
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1. INTRODUCTION

More than a quarter century ago, Gold and Hoyle (1960)

suggested that horizontal photospheric motion can move the

footpoints of magnetic field lines and twist the flux tubes

because of the highly electric conducting plasma at the

photospheric levels. A number of investigators (Tanaka and

Nakagawa, 1973; Low and Nakagawa, 1975; Low, 1977; Klimchuk,

Stu:u-ock and Yang, 1988; Klimchuk and Sturrock, 1989) studied the

evolution of force-free fields and its role in energy storage

(build-up) for solar flares.

All of these studies were limited to the case of

magnetostatics; self-consistent dynamical effects were ignored.

Recently, Wu et al. (1983, 1984, 1.86) presented a self-

consistent MHD model for the purpose of examining flare energy

build-up and wave-mass interactions due to shear and converging-

diverging motions at the photospheric level. Most recently,

Mikic et al. (1988) and Biskamp and Welter (1989) have presented

numerical results on the dynamical evolution of a magnetic arcade

type due to shear motion. However, their models are restricted

to symmetric boundary conditions, while in this study self-

consistent boundary conditions were used (see, for example, Wu

and Wang, 1987; Nakagawa et al. 1987).

In this paper, we use the time-dependent MHD simulation

model devised by Wu et al. (1983) to reveal a nonlinear solution

for the evolution of the magnetic field configuration driven by

shear motion. In this solution, we find that the plasma velocity
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in the vertical plane perpendicular to the shear, grows

exponentially in a process which can be analytically described by

a linear MHD instability. This upward velocity steadily

increases until it reaches the average Alfven speed. At later

times, a nonlinear instability sets in. A field line pinch

occurs in the lower shear region in the numerical results. At

the same time, mass and field line expulsion appears in higher

parts of the region and the closed field tends to open locally.

We suggest that these new effects (i.e., mushroom cloud-like

flow, pinch and expulsion) can explain the formation of current

sheets, the opening of a closed bipolar field, and the ability of

particle streams to escape from the solar surface. specifically,

we suggest that this model applies to the eruption cf arch

filament systems (AFEs) and their relation to non-flare-

associated coronal mass ejections (CMEs). The mathematical

description of the model and numerical results are given in

Section 2. A general physical interpretation of these results is

presented in Section 3. An application of this model to specific

coronal phenomena is given in Section 4, and the concluding

remarks are presented in Section 5.

2. NUMERICAL SIMULATION

In order to illustrate how shear induced non-equilibrium

occurs, we use a theoretical model in which a two-dimensional

bipolar field undergoes a steady shear velocity at the footpoints

of its magnetic loops. The shearing motion is sketched in Figure

1(a), and the initial bipolar field is shown explicitly in Figure
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1(b).

First, we perform a simulation of the dynamic response of

the bipolar field to the shear. Then we use an analytical method

to interpret the simulation results. The simulation model is

based on a two-dimensional, time-dependent, MHD model (Wu, et al.

1983, Hu and Wu, 1984) with an improved FICE (Full Implicit-

Continuous-Eulerian) numerical scheme (Wu and Wang, 1987).

Symmetrical side boundary conditions have been replaced with non-

reflecting boundary conditions. This implies that the physical

phenomena are determined by the solution at a specific time and

are not determined by the specified boundary conditions as in the

case studied by Mikic et al. (1988). The physical conditions on

these two side boundaries are determined mathematical.y thrz-uh

compatibility relations that are given in detail by Wu and Wang,

(1987). Thus, the computation domain (i.e., lxi 8.4 x 103 kM,

0 y s 8 x 103 km) consists of three free non-reflecting

boundar: is (i.e. top, and sides), while the bottom boundary (y =

0) is created with the method of projected characteristics

(Nakagawa, et al. 1987; Hu and Wu, 1984). The basic equations

for this model are the time-dependent MHD equations with infinite

conductivity, no viscosity and symmetry in one direction (Wu et

al. 1983). Solar gravity, plasma pressure gradients, and

compressibility are explicitly considered. None of these charac-

teristics were considered in the work of Mikic et al. (1983), and

Biskamp and Welter (1989) have only considered compressibility in

a special way.
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The initial conditions are (see Fig. lb),

gy
= oc exp - , ToT, vx,v ,v = 0,

RTC,
B:,.o = B0 [cos(ax)] e B.!o = - B0 [sin(ax)] ea , B..0 = 0,1

a = i/2x0 , X0= 8.4 x 103 km. /
(1)

The plasma parameters are taken to be Pc = 1.67 x 10-12 g cm-3

and T. = 1051 K. These parameters are representative for solar

conditions at the higher chromosphere and lower corona. The

-omputation grid points are:

x= -8.4 x 103 + (i - l)Ax, i = 1, 2, ... 22

yj (J-1).iy. j = 1, 2, ll

.I= X y = 8 X 102 km - 1 arc sec.

The non-reflecting boundary conditions, as noted above, are used

for the top (y = yj1 ), left hand side (x = xj), and right hand

side (x= x22). The conditions at the bottom boundary (y = y1 )

are taken as follows:

P = Pc, T = TC, B.!' = B- 0, v× = 0, but v., V. = 0,

w sin (ax), if lxi _ 5.2 x 103 km

(6.8 x 101 - 1x()
Vz 1.6 x w c (sgn x) sin (5.2 x 103a),

if 5.2 x 103 < lxI _ 6.8 x 103 km

0, if 6.8 x .0 3 < xl < 8 x 103 kin,
(2)

The other physical quantitieL (p, T, vy, B., B.) are computed by
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means of the compatibility equations for the non-reflecting

boundary condition which assures the consistency of the numerical

computation.

In order to understand the general physical behaviour of the

nonlinear solution from the mathematical model, we have performed

three numerical experiments. These three cases use combinations

of magnetic field intensity and magnitudes of the shear velocity.

The results for these three cases are described as follows:

(i) Large Plasma Beta (B0 z 15.4)

In this numerical experiment, we chose the initial plasma

beta (8.) to be 15.4. This is not a physically realistic case

for a solar active region; but it does provide a basis for

comparison with the other cases. This case corresponds to a-

local, exceedingly low, magnetic field strength of 2.12 gauss at

the crigin, x = y = 0, as shown in Fig. lb. The shear velocity,

we, was taken to be 5 km s- . Figure 2 shows the evolution of

the magnetic field lines due to une shear motion at 200 s S t S

3200 s. It is useful to examine the evolutionary behaviour at

various Alfven times (defined as TA = fAy (or Ax)]/v, _ 1700s).

During the early stages of evolution (that is, within the first

Alfven time), the magnetic field lines rise together in an

orderly fashion in response to the shearing motion. This

behavior is also presented in the analytical solution of Low

(1981) and the force-free numerical solutions of Klimchuk and

Sturrock (1989) although they do not consider dynamics and

gravitational effects. After the first Alfven time period, the
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evolutionary behaviour of the field lines becomes more

complicated. Nonlinear interactions take place between the

shear-induced mass motion, magnetic field and gravity with the

result that in some regions the field lines are bunched together

to form a current sheet (see Fig. 2g and 2h). Further

understanding of these phenomena is provided by the

representation of the shear induced mass motion as shown by the

vectorial velocity field in Figure 3. Notice that the inclusion

of magnetohydrodynamic effects, in contrast to the kinematic

study of Low (1981), causes upward mass motion in addition to the

up-lifting of the magnetic field lines because the plasma has to

move with the field lines under the conditions of infinite

conauctivity as manifested by the upward component of Lorentz

force. Note, however, that some of the uplifted plasma (in the

region displaced from the origin) slows down under the action of

gravity, reverses direction, and falls back to the surface. Most

of the motion, however, is upward. These upward mass motions are

also found by Mikic et al (1988) and Biskamp and Welter (1989).

However, these workers did not include compressibility, pressure

gradient, and gravitation as noted above. The present study,

which does so explicitly, demonstrates a different evolution in

the later stages.

This induced upward motion can be explained via our

governing equations. When we introduce the shear motion (V,), an

axial field component, B., will be induced through the induction

equation. The additional magnetic field will cause an additional
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magnetic pressure gradient in the momentum equation. This

additional pressure gradient induces both the horizontal (vx) and

upward (vy) motions as shown in Figure 3. Subsequently, the mass

motion interacts with both the magnetic field and gravity.

Closer to the surface, the combined effect is dominated by

gravity, and the result is the cluster of magnetic field lines in

which a current sheet is formed as shown in Figures 2(g) and 2(h)

at nearly twice the Alfven time.

Figure 4 shows the plasma properties (i.e. density,

temperature and pressure enhancement in terms of percentage

change from the initial values at each level) at the end of this

simulation (t = 3600 s; more than 2 TA). These properties are

shown at various heights (y,, y2, Y4, Y6, and Y10 , a= shz;:n in

Figure 1b) as a function of horizontal distance. These results

also help to explain the magnetic field line distribution. That

is, the high density magnetic field region shown in Figures 2(g)

and 2(h) within the mid-horizontal range (at the altitudes:

Y2,Y4) corresponds to the increase of plasma density by 20% (i.e.

LP/P 0 - 0.2), temperature decrease of 20% (i.e. T/T0 - -0.2),

and magnetic field strength (AB/B 0 ) increase by a factor of 3.

These properties are similar to those for a current sheet. With

these properties in mind, let us now turn our attention to the

plasma flow patterns as shown in Figure 3. The plasma flow rises

initially above the zone of maximum shear velocity. At later

times (say, from 1000 to 2000 s), the plasma flow moves toward

the central region in a pattern reminiscent of a mushroom cloud.
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In the later stages as shown in Figures 3g and 3h, the

significant plasma motion is again concentrated in the

neighborhood of the sheared region. This is also the region

where the magnetic field lines have been clustered as seen in

Figures 2g and 2h.

(ii) Intermediate plasma beta (i.e. B. = 1.54)

In this case, our simulation is performed with an initially

modest magnetic field strength (B0 = 21.3 G) and with a shear

velocity (we) of 15 km s-1 . The qualitative behaviour of the

evolution of the vectorial fields (i.e., magnetic and velocity

fields) and plasma parameters (i.e., density, temperature, and

pressure) are similar to the Case (i). Therefore, we shall not

repeat a full presentation. NevertLheless, there are some-

interesting features that appear in the evolutionary results of

the magnetic and velocity fields as shown in Figure 5.

The most pronounced result is the induced velocity

distribution shown on the right side panels of Figure 5. The

high velocity of the ascending movement in the central region is

especially notable. As a result, the closed bipolar field tends

to be opened up. We attribute this to the force created by the

ascending movement of mass motion initiated by the shear

prescribed at the lower boundary. The highest velocity attained

by the mushroom cloud-like ascending mass motion is about 25 km

s- 1 at t = 700 s (i.e., -4 Alfven times) after introduction of

the shear motion. The corresponding plasma parameters can be

summarized as follows: the density decreases by about 50% at the
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legs of the intermediate loops marked by the footpoints x4, xS,

and x6 as labeled in Figure lb. Again, the pinch effects

discussed for Case (i) occur and a current sheet is formed where

the density increases by 25%; the temperature decreases by 30%;

and the field strength increases by a factor of 2.

(iii) Low plasma beta (i.e. 80 = 0.06)

In this case the initial magnetic field strength is

increased to a more realistic value of 106.3 G without changing

the other plasma parameters. The initial plasma beta is equal to

0.06 which is twenty-five times smaller than Case (ii) and two

hundred fifty times smaller than Case (i). Again, the evolution

of the magnetic field and velocity field exhibits patterns

similar to those of Cases (i) and (ii). Figure 6 shows the

evolution of the magnetic field and the velocity vector field for

this case. The maximum upward velocity is a factor of 4 higher

than for Case (ii) and a factor of 40 higher than for Case (i).

We note that the time required to reach the maximum velocity is

much shorter than in the other two cases.

Ifn order to examine this phenomenon further, we plotted in

Figure 7 the planar maximum absolute velocity (i.e.

2 2
(v× -v)112) in the neighborhood of the apex of the arcade as aX Ymax

function of time for the three different cases. We chose to

plot this parameter instead of the upward velocity, vy, because
2 2the representative parameter rv. + v. 11 2 is related to our

analytical analysis that is discussed later (and in the

Appendix). Actually, the numerical results show that the
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horizontal velocity, v., is only 25% of the vertical velocity,

v Y First, we point out the change of scales that was required

for the three Cases (i), (ii), and (iii). Second, we direct

attention to the common features: an approximately linear initial

phase followed by a smooth transition to an explosive upward mass

motion. The latter phenomenon is representative of the upward

regions as discussed earlier.

It is interesting to relate these results to the magnetic

field evolution. For example, we direct attention to Figures 2,

5 and 6 where, in the early stages of the evolution, the change

of field lines is regular with a slowly ascending movement. This

upward motion is also present in the force-free analyses of Low

(1981) and Klimchuk and Strurrack (1989), and the numerical

incompressible simulations of Mikic et al. (1988), and Biskamp

and Welter (1989). However, the change of field lines in the

present case becomes quite irregular in the later stages of the

evolution. From Figures 2, 5, and 6, we notice that the lower

field lines are pinched together and the upper field lines tend

to open up when the maximum planar velocity exceeds the Alfven

speed. The Alfven speed for these three cases is 4.67 km s- ,

46.7 km s- 1 and 232 km s-1 respectively. The maximum footpoint

shear motion, v., is slow compared to the Alfven velocit' in the

latter two cases but fast compared with resistive diffusion in

all three cases. Thus a sequence of essentially quasi-static,

force-free states with frozen-in magnetic fields is found in the

early stages, which ends when the magnitude of planar maximum
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velocity exceeds the Alfven speed, and the system becomes

unstable. We claim that this is a shear-induced instability that

could not be found in the earlier numerical simulations that

omitted compressibility, pressure gradient, gravity, and the

different treatment of boundary conditions. We shall return to

this point later for further discussion utilizing analytical

results.

3. FURTHER INTERPRETATION OF THE SIMULATION RESULTS

From these simulation results, we have found that the

buoyancy force leads to a mushroom cloud-like ascending movement

that pushes the closed magnetic field upward. In order to

understand this result further, we supplement our numerical

simulation with an approximate analytical solution:

Creation of Mushroom Cloud-like AscendinQ Motion

From the numerical simulation of all three cases, we observe

that the shear-induced mushroom cloud-like ascending movement can

be ascribed to the out-of-plane component of the magnetic field,

B.. This component gives an upward magnetic pressure gradient

(i.e. 7(B2 /8)) which causes the ascending movement of mag-

netic field and corresponding plasma flows. On the other hand,

we notice that no Bz component is generated near the origin (x =

0, y = 0) aue to shear. This leads to a downward force, such

that we observe the field lines being squeezed together to form a

current sheet as shown in Figures 2, 5, and 6. This point can be

illustrated further by using a linear-approximation. The

justification for the use of linear theory is seen from the
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numerical results that show that the initial stage of the shear-

induced motion behaves regularly as shown in Figures 2,3,5 and 6.

A closed form linearized solution for the induced field

component B. is the following (for the derivation, see the

Appendix):

c~eav cos (ax) cos (Lax(eaY) cos (ax)]
,14 p 0  (3)

sin ((t+t 0 )Lw0 ]

This result expresses that the induced magnetic field B. rises

from the lower boundary (i.e., y = 0) and spreads upward with a

characteristic time scale Lw , where L is defined by Eq. (A.8).

It could be noticed from Eq. (3) that BZ decreases exponentially

with respect to the increase of y (height), because the term, cos

[Lax (e-aY) (cos (ax)) " ] in the central region, varies slowly

with height.

Finally, the coefficient c1 corresponds to the shear

velocity (we). The part of the total upward Lorentz force

a B"
(--B= ) that causes upward acceleration is indepen-

ay 2
dent of the sign of the coefficient c, (or w.).

Shear-induced Instability

From the simulation results shown in Figure 7, we found

earlier that instability sets in when the absolute maximum planar

velocity exceeds the Alfven speed. In order to substantiate this

claim, we performed a linearized analysis in which an approximate

linearized solution for the planar velocities (u, v) was

constructed as shown in the Appendix (Eq. (A.13). These
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velocities are as follows:

U = ' e- 2ay sin (2 ax)
(4)

vi = ' e- 2 ay [1 + cos 2 (ax)]. I

The electric current along the z-axis can be estimated to the

first order, as:

- J.= - - 16 a2 B e "3ay cos ax ' dt, (5)

c ax ay J0

which means that the Lorentz force 1/c (JZBX - J×Bz) leads to

ascending flow, because it has been shown in the Appendix that 5'

is always positive -tnd has an exponential growth rate as shown in

Eq. (A.16). We have identified this phenomenon as the shear-

induced instability since the numerical sirulati.on results shown

in Figure 7 are consistent with the analytical analysis. It is

further noted from numerical results that the term - 1/c JxB. is

always upward.

The results for the evolution of the magnetic field

configuration shown in Figures 2, 5 and 6 show clearly the two-

stage evolution that we discussed earlier. The first stage of

the evolution can be described by the linearized solution given

in Eq. (4). The second stage of the evolution involves the

pinching together of field lines in the region where the shear

motion was applied. If the three factors noted earlier

(compressibility, pressure gradients, and gravity) had been

absent, we believe that our results would have been similar to

those of Mikic et al. (1988). Our current sheet, however,
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developed horizontally, whereas, their current sheet was

vertical. We explain this phenomenon by examining the

distribution of upward component of the Lorentz force (i.e. 1/c

(JBx - JxBz)). To illustrate this viewpoint, we use the results

for 8. = 0.06 because this case best resembles the real physical

conditions in active regions. The results are plotted in Figure

8. The left-most panels show the horizontal distribution of the

vertical component of the Lorentz force at different heights from

Y1 to Y10 [as shown in Figure ib] at 25 s after the introduction

of the shear motion at the lower boundary. As noted earlier, the

Alfven time for this case is - 35 s. This result clearly

indicates the first stage of the evolution due to the

intrcduction of shear. All the forces are in the upward

direction which means that all field lines are lifted up in an

orderly fashion. The magnitude of these forces is of the order

of 3 x 10-9 dyne/cm 2. The middle panels show the resultant

upward component of the Lorentz force at t = 100 s which is about

three Alfven periods. These results are reflected in the

nonlinear nature of the evolution in which the Lorentz forces

have both upward and downward direction at the intermediate

altitudes.

This bi-directional nature of the Lorentz forces causes the

field lines to be pinched together in the lower regions as shown,

for example, in Figure 6 for B. = 0.06. This particular feature

is most pronounced in the results shown in the right-most panels

which show the vertical component of Lorentz force at t = 213 s;

130



this is about seven Alfven periods after the introduction of the

shear. We note that the vertical component of this Lorentz force

decreases at high levels, but, in lower levels (i.e. Y, and Y2),

two very strong oppositely-directed vertical components of

Lorentz force (-3 x 10- 7 dyn/cm 2) appear. The force at Y, is

upward and the force at Y2 is downward. These two forces cause

the field lines to be pinched together as shown in Figure 6c.

Further discussion of this point will be included in the next

section as part of a general scenario for shearing motions of

magnetic arches or bipolar regions.

4. SCENARIO

From these simulation results, supported by the linearized

analytical solution, a physical scenario is proposed for the

formation of an "Arch Filament System (AFS)" and its eruption as

part of a more general scenario for "Coronal Mass Ejections

(CMEs)". A schematic representation of this scenario is

presented in Figure 9. After introduction of shear motion at a

bi-polar region, all of the field lines will first be lifted up

in an orderly fashion due to the shear-induced upward Lorentz

force before the absolute maximum upward velocity reaches the

local Alfven speed; this is the linear stage of the evolution.

When this upward velocity is in the neighborhood of the local

Alfven speed, the lower parts of the magnetic field lines are

pinched together, and an arch filament system is formed. At the

same time, the upper part of the magnetic field lines is pushed

upward, and a certain amount of mass is carried upward. This
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upward mass motion is shown in Figure 10 in terms of contours of

,p and Ap that move upward at all but the lowest gravitationally-

bound heiahts.

Finally, when this absolute upward velocity exceeds the

Alfven speed, the shear-induced instability sets in as shown by

the numerical results of Figure 7 and the analytical solution in

the Appendix (Eq. (A.16)). In the following we compare this

scenario with the available observations.

Arch filament systems and coronal mass ejections have been

investigated by many authors (Bruzek, 1967, 1968, 1969; Bumba and

Howard, 1965; Martres et al. 1966; Harrison 1986). These authors

have noted that arch filament systems (AFS) always connect areas

of opposite polarities and cross the neutral line in the

longitudinal magnetic field. Bruzek (1969) has pointed out that

the occurrence of AFS is associated with evolution of young

bipolar spot groups. As for the motion of AFS, its

characteristic feature is its expansion in height with an

ascending velocity of 16 - 25 km s- 1 with footpoints rooted in

the two opposite spot regions. This behaviour is quite similar

to the early stage of the simulated magnetic field line evolution

and mass motion shown in Figures 2, 3, 5 and 6 where the apex of

the magnetic loops is rising but their legs have little lateral

movement. It was further noted that the AFS has both descending

and ascending motions in loops. Bruzek (1968) attributed this

phenomenon to the mass injection at one leg and its return to the

chromosphere via another leg that has opposite polarity. On the
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other hand, shearing motion, if it has a line-of-sight component,

would always lead to a blue shift in one leg and red shift in the

other. Therefore observations of flows in filaments are not

evidence of shearing. However, such evidence is not needed since

the relative motion of bipolar spots is both necessary and

sufficient evidence of shearing. Nevertheless, this concept of

descending and ascending motion is based on Doppler shift

measurements which can easily, at least partially, be recognized

as complementary evidence of horizontal shear motion that occurs

on both sides of the neutral line. This statement considers the

fact that the spot group area is often not strictly perpendicular

to the line-of-sight of the observer; thus the Doppler shift

velocity must have an appreciable horizontal component (Harvey

and Harvey, 1976).

On the basis of our numerical simulations, the analytical

solution and observed characteristics, a physical model for the

formation of AFS and subsequent CME can be constructed as

follows. First, a young bipolar sunspot group emerges from the

sub-photosphere. As it rises, its area increases and the neutral

line dividing the opposite polarities gets longer and longer.

Then a portion of the field can be reasonably regarded as a two-

dimensional bipolar field (as is used in our mathematical model).

In the meantime, the opposite polarity areas rotate with respect

to each other. Associated with this rotation are horizontal

shear motions that appear on both sides of the neutral line

(thereby justifying our construction of the shearing
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velocity used herein). The Lorentz force generated by this

process (see, for example Figure 8) pushes the magnetic loops

upward during an initial stage. At the later times, the magnetic

field becomes distorted, nonlinear MHD effects force field lines

to pile-up and, then, the pinch phenomenon ensues. Such pinched

magnetic flux tubes could be identified as arch filaments which

are visible as a set of dark loops. The simulation has shown

that in this region the plasma has high density and low

temperature. From the analytical solution, we notice that the

growth time (Va)-l of the shearing instability is about 30 min

which is a typical average life time of AFS. Thus, this

simulation model may be appropriate to describe the formation of

AFS and the eruption which leads to some CMEs.

5. CONCLUDING REMARKS

We have used a time-dependent, nonplanar MHD model for a

bipolar magnetic region that was subjected to shearing motion at

its foot points. The characteristic plasma beta was varied over

a wide range - from 15.4 to a more realistic value of 0.06.

Common features were identified for all cases with the

differences primarily occurring in the timing of the events vis-

a-vis the characteristic Alfven times. An essentially linear,

early phase of upward mass motion was followed until the Alfven

speed was reached, and a shear-induced instability is initiated.

This nonlinear instability may be the basic mechanism for arch

filament formation and subsequent coronal mass ejections.

In our opinion, the early evolution in our simulation is in
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accord with quasi-static evolution of magnetic arcades

demonstrated by Klimchuk and Sturrock (1989). In their work, a

very low beta plasma was assumed, and therefore the magnetic

field is unaffected by pressure and gravitational forces. Our

simulations are also in accord with the dynamic evolution of

magnetic arcades demonstrated by the numerical simulations of

Mikic et al. (1988) and Biskamp and Welter (1989) in both the

early and intermediate stages of this evolution despite their

neglect of compressibility, pressure gradient, and gravity. We

did not find the reconnection and formation of an ejected

plasmoid, as Mikic et al (1988) did, since we assumed electrical

resistivity and viscosity to be zero. During the late stages of

the evolutionary development, when the plasma velocities

surpassed the Alfven speed, our numerical simulations demonstrate

nonlinear instability and catastrophic upward motion at high

altitudes.

As a final remark, it can be shown that these numerical

results are valid over a wide range of parameters according to

the scaling rule for dynamic similitude. For example, the

present numerical results, computed on the basis of T(, l=0 K

and Po = 1.67 x 10- 12 g cm- 3 , can be scaled to initial conditions

of T, = 106 K and p, = 1.67 x 10- 1n g cm -3 by introducing a set

of scaling parameters; t, = J t0 , L, = IL0, v, = T v0, T, = X

To, Pi = X-1 P0, P1 = po and B, =B, which leave the governing

equations invariant for a given plasma beta. In a recent study

of similitude theory, Wu et al. (1988) have shown that the
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present results also apply to the physical condition represented

by these different initial conditions.

As another example of the use of dynamic similitude, we may

pose the following question: if the footpoints are moved slowly

enough that the evolution is quasi-static, *ould the magnetic

field closely approximate the static equilibrium states?

Although, we suggested above (as did Mikic et al., 1988, and

Biskamp and Welter, 1989) that the answer is 'yes', the reader is

reminded of the values of the shearing velocity v.. used in the

present studies (e.g., 15 km sec -1 , maximum, for 80 = 0.06) and

in the above mentioned work (30 km sec - , assumed by Mikic et al.

1988 for B - 0.03). Although these maximum footpoint shearing

velocities are much less than the Alfven speed, they are a factor

of about 10 larger than observed photospheric velocities.

In summary, we consider the results given here to be

representative of a realistic dynamical evolution of the posed

physical problem of sheared magnetic arches and their evolution

into arch filament eruption and coronal mass ejections.

Finally, we remark on the relevance of our results to the

observations of some CMEs as reported by Harrison (1986). The

major point of his work is that a small x-ray burst is often

found at the very onset of a CME, often followed by a large x-ray

flare later on during the CME. In the present work, the

formation of the current sheet coincides with the rapid increase

in the velocity of the upper portion of the field lines. One

could interpret the latter, as already discussed, as the onset of
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CME, while the current sheet formation could lead to a burst of

energy dissipation (not shown here) which would be visible as a

small x-ray burst. The simultaneity of these two events is

consistent with the observations of Harrison (1986). This could

be another indication that these numerical results indeed

represent a basic mechanism for the initiation of CMEs.
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APPENDIX

To obtain an asymptotic solution for the relationship

between the footpoint shearing velocity, w, and BZ in the first

stage (linear stage) of evolution during which p, p, T, Bx, By

vary slightly, we write:

P = PO P11 P = P0 + Pl, T = T o + T 1 , Bx = Bx0
(A.1)By =By0  - By~1  BZ = B,1 , vx = vx1 , Vy vyl, v iBy = B 0 Y1 11 "- = V = V

where subscript 0 and 1 indicate the zero-order and first-order
BO

quantities. And, V,,i, ,vyi1 , jvz1  << = Alfven speed,

B:1 << B:. inserting (A.1) into Eqs. (2.4) and (2.7) formerly

given by Wu et al. 1983) and leaving out the higher-order quan-

tities, we obtain the linearized equations

avz 1  Bxa a(Bz i/J4po) By0 O(Bzj4fpo)

at 4 -m-p,- ax -4rpo 8y

b By 0  Bz

2 4(A.2)2 .441p0 o 47rp

a(B::, -;4,p0 ) '(0 av 1  B.{o av 1

at -;47p ax -,4 ir po ay

where %O = PC e", b = g/RT,. To solve Eq. (A.2), we con-

struct the auxiliary equations:

av" a(Bz/N41TpO) a(Bz/ 41po)
at - BXo(47rPO)-1/2 ,a+ Byo(4,Tpo) - 1/ 2a

at ax ay

8(B./-,47p 0 ) av av
= BXo(4p, o -_r Byo(4Op)-1/2 * (A.3)

at ax ay
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II

Bz . . * Bz i
v, + __ ivz __

-N4 Trp a, ' N4 Ir p o;
Substituting: F' F-=

2 2

Eq. (A.3) reduces to

8F, a' F+  aF+ 1
- B0 (4 7r p) " 2  e(ab/ 2)y cos ax - - sin ax

at ax ay)

aF- aF- aF'\
- B (4p) - /2  e(a-b/)Y cos ax - + sin ax .- I-t ax ay)

(A.4)

Since solving Ea. (A.4) is equivalent to solving its correspond-

:ng ordinary differential equation (Courant and Hilbert, 1962) it

is easy to write down the solutions as follows:

F+ = $ (e- ly cos ax, t.0 + f(ax) (e- aY cos ax) - I+b(
2 -

F- = (e - a Y cos ax, t wo - f(ax) , (e - aY cos ax) - 1+b(2a) I (A.5)

where

WO = aB 0 (4ipo) - 1 / 2, f(x) - (cos x")-I/2a , dx'
t 0

onslderlng the boundary value of v- (the nature of shearing) and

asing Eq. (A,5) we can find the following solutions

v= c,e - a v . cos ax - cos(Lf) - sin (Ln),

* (A.6)
B.

- = c, eay cos ax , sin (L[) cos (Lf),

where

(t + t 0 )w , f(ax) - (e-aY cos ax) -  b ( za)-

t, L and c, are integration constants. Back to solving Eq. (A.2)
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B.

suppose v.1., - satisfies the equality (A.6) except that L,
,. -47rPo,

c, are now not constants but functions of x,y. Thus

V: 1 = c 1 (x,y) . e-aY.cos(ax) . cos (L(x,y).f) . sin (L(x,y) .

B : 1  -
= c1 (x,y) . e - Y cos(ax) . sin (L(x,y) )

cos, (L(x,y) (A.7)

Inserting (A.7) into (A.2), c, and L can be determined uniquely

by solving two ordinary differential equations. First, L satis-

fies the equation:

aL aL
cos ax . - - sin ax * - = Q (x,y,L)

ay

Q (x,y,L) - (b/4) sin (ax) * sin (2Lf) sin (2L,) (A.8)

[? sin (2Ln) - n sin (2L )j-i ,

with boundary condition LIy-- = L(x). After L has been found,

(in cl) can be obtained in the same manner using the following

equation

a(lnc,) a(lnc.)
cos (ax) sin(ax) [s . tg (Lf) - . ctg (Lr)]

ax ay

. Q (x,y,L). (A.9)

In fact, ;e only apply (A.7) to explain the physical nature in

the lower shearing region where p0 z 0.8 Pc, therefore L and c,

can roughly be regarded as constants.

It is difficult to find an asymptotic solution for vx and

v . Let us consider Case (iii) of strong magnetic field, in

which the inertial force and -7p and pg can safely be ignored.

Inserting (A.l) into (2.2) and (2.3) of Wu et al (1983), the
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linearized equations are given as follows:

- avx l  1 'SBl aB,111 1 aB, 1
- = - B.10  B I. B= I
at 4 7y ax 4 7ax

(A. 10)
a v.,Al 1 (8Bxl aB,!1  1 BZ

B0< 1 By ZX I

at 4,ay ax 4r ay
1 8.1 1 8Bz
3. aB". 1I

where the terms - - B- - - BZ1 - that are second-
4a, ax 47r ay

order quantities must be kept in view of actual mathematical

manipulation. From (A.7) the partial Lorentz Force can be

written as

aB:, z
- (4,o) B... - (C1 a/2) ,' + eav

ax
. sin(2ax) sin 2 (Lf),

aB-I. 2

- (47TpO) - l  Bzl - (c, a/2) * * e- 2 a [1 + cos(2 ax)]
ay sin2 (Lf),

(A.l1)

where ' and ii are slow-varying functions of x,y. The

representations for i', n, are very complicated in the case with

gravity but as we only deal with the lower central part of the

domain where const. ax . e- a Y  (cos ax)-', B., B.*.

Therefore n' and i, asymptotically approach the case with no

gravity. In such case n' and Hi take simple forms as:

= (cosIT) 2 . i cos .. sin ,

L= L y  cos 7 sin - (sin ax) - , (A.12)

Lea y  ax (cos ax) - .

Figure 11 shows the behaviour of n' and n,. Note that if Leay is

less than 0.5, then 0 < 91 <<' 1: . Therefore we will pay no
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attention to the difference between )' and )' + ), within the

range axt < -/4. (A.11) reminds us of analogy between shearing

velocity and force, so we suppose velocity having a mushroom-like

form as:

Vx = 8 e - 2 aY sin ax,
(A. 13)

vyz= 3 e-2 Y [i + cos (2 ax)],

where 8' is a function of t, x, y (but weakly depends on x,y) be-

ing determined later. Inserting (A.13) into the linearized

equations of (2.5) and (2.6), of Wu et al. (1983) the time varia-

tion of current J:./c can be found as

a aB .,1  I B ×C
- -. . = 16 a 2B0 ' e -3 aY cos (ax). (A.14)

at ax ay !

In deriving Eq. (A.14) the weak dependerice of ' on x,y has been

used. Differentiating (A.10) with respect to t and inserting

(A.14) and (A.11) into it and then letting it go to limitation

when y goes to zero, we obtain one equation

2
- = a,'' v (c 2 a/2) . ='

Y=O (c i: =

Lw sin [2Lw, (t + to)]

(A.15)

2
to determine 6' uniquely (here v2 = B0/4wp 0 ). Noticing ', ji

only weakly depend on x,y, Eq. (A.15) can be regarded as an ordi-

nary differential equation and, therefore, can be easily

integrated with respect to t. Giving the initial condition:
d5%

, = 0, = 0 when t = 0, we obtain an asymptotic sol-y=0 ' Idt
ution as:
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a''-0 = [(a+1)/2] , exp (- 8 VA at) + [( -B)/2] exp (--18 vA at)

sin f2Lw,(t + to)]
- *L (A. 16)

sin F2Lwot 0 ]

with
2 2

Lw0 ac1 n',1 =  Li'c./vA
A - sin (2Lw~t0 ) - - ILA+ > 0

8(Llw 2 + 2v 2a2 ) 8 2 (LI+2)
0 A

2 2 2 2
SY= COS (L 2  Vc)/vA > 0

8N2 V, (L2 2 - 2v'a 2) 16(L2+2)

Generally, we can find an approximate solution for the average

3', the representation of which is the same as (A.16) except for
the substitutions 3% , v 2 by -Y0 v 2 where

-It - PY - 2 = 2 2 e aY dy/y 2

-S : i d y / y 2  ' 1 0 d y/ y 2 , Vj : A  e0
o 0 o

From (A.16) it can be seen that 5' will grow exponentially, and

that the shearing velocity c1 acts like a "seed". If there is no

"seed", the mushroom flow velocities (v×, y) will never arise.

The growth rate is independent of c. but depends on the Alfven

speed v, = B,/.,47r . Therefore shear motion can induce linear

MHD-instability. However this instability soon attains satura-

tion, and the flow becomes quasi-steady and increases gradually

until the velocities (v×, v.) exceed vA.
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Figure 1. (a) Sketch of a two-dimensional bipolar magnetic field

that is subjected to a footpoint shearing motion as

indicated by the arrows.

(b) Explicit bipolar magnetic topology prior to the

shearing motion (see Equation (1)). The photospheric

boundary extends to ixl = 8.4 x 103 km in both

directions from the origin. The vertical extent into

the corona is to y = 8 x 103 km. The positions y =

Y1 , Y 2, ... y10 indicate the vertical levels at which

horizontal surveys will be shown of various physical

quantities during the shearing motion at the

footpoints.

Figure 2. Magnetic field line evolution as a function of time

during induced footpoint shearing motion for Case (i):

30 = 15.4 and the Alfven time, TA = 1700 s. The

horizontal axis represents the distance from

x ....... x 2 as shown in Figure 1(b).

Figure 3. Vectorial velocity field, (v2 -T v2) 1 /2, as a function

of time during induced footpoint shearing motion for

Case (i): 80 = 15.4; TA = 1700 s.
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Figure 4. Changes (relative to the initial local values) of

density, temperature, and pressure at the end of the

simulation (Case (i): 30 = 15.4), t = 3600 s which is

more than two Alfven time periods. The distributions

are plotted along the entire horizontal scale of the

domain and at various levels; Yl, y2 , Y4, Y6, and y1 0

as shown in Figure lb. All the values are normalized

by a reference quantity as indicated.

Figure 5. Evolution of magnetic field lines and vectorial

velocity fields at various times for Case (ii): B0 =

1.54. The characteristic Alfven time for this case is

TA = 174 s.

Figure 6. Evolution of magnetic field lines and vectorial

velocity fields at various times for Case (iii): B0

0.06. The characteristic Alfven time for this case is

7A = 35 s.

Figure 7. Maximum vectorial velocity that is representative of

the upward vertical mass motion for Cases (i), (ii),

and (iii). Note the change of scales. The

respresentative Alfven times for the three cases (B0 =

15.4, 1.54, and 0.06, respectively) are TA = 1700 s,

174 s, and 35 s.
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Figure 8. The total y-component of the Lorentz force per unit

area at t = 25 s, 100 s, and 213 s and at various

levels in the solar atmosphere (y = yl, y2 , ... etc.).

The representative Alfven time for case (iii) is 35 s.

At t = 100 s (about 3 TA) during the nonlinear stage of

evolution, the Lorentz forces at the intermediate

heights have a combination of upward and downward

directions that causes magnetic field line pinching

(see text). This pinch effect is more pronounced at t

= 213 s (about 7T,) at lower altitudes. The

horizontal axis represents the distance x ....... x11

as shown in Figure l(b) also shown for Figures 2 - 6.

Figure 9. Scenario for the formation of an arch filament system

(AFS) and upper level movement outward in the initial

stage of a coronal mass ejection (CME) as a result of

shear-induced instability.

Figure 13. Contours of pressure and density changes, -p/p0 and

AP/p,, for case (ii) -10 = 1.541 at several times.

Figure 11. Behaviour of I' and r.. See Appendix (Equation A.12).
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MODEL CALCULATIONS OF RISING MOTIONS OF PROMINENCE LOOPS

Tyan Yeh

Space Environment Laboratory, NOAA Environmental Research Laboratories

Boulder. CO 80303. U.S.A.
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S.T. Wu
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Huntsville. AL 35899. U.S.A.

Abstract. Model calculations are presented for the rising motion of the top section of a

prominence loop, which is represented by a straight flux rope immersed in a coronal medium

permeated with a bipolar magnetic field. Initially the prominence is at rest, in equilibrium

with the surrounding coronal medium. When the magnetic monopoles that account for the

s ource current for the bipolar field strengthen. the upward hydromagnetic buoyancy force

overcomes the downvard gravitational force so that the prominence is initiated into upward

motion. The illustrative examples show that prominences can move away from the solar sur-

face by the action ot hydromaunetic buoyancy force if the disturbances are large.
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1. Introduction

A new dynamical model of prominence loops was recently constructed on the basis of the

theory of hydromagnetic buoyancy force for flux ropes (Yeh. 1989). A prominence loop im-

mersed in the solar atmosphere is regarded as an extraneous body, in the sense that it is mag-

netically separated from its surrounding medium. Thus. its magnetic field, mass density, tem-

perature. and motion are quite different from those of the surrounding medium. The impor-

tant feature is the polarization current induced on the periphery of the prominence that

makes the ambient magnetic field tangential. The exertion of the ambient hydromagnetic

pressure gives rise to the hydromagnetic buoyancy force. Its predominant constituent is the

diamagnetic force which amounts to the force exerted on the currents in the prominence by

the external currents that sustain the coronal magnetic field. For a prominence to be station-

ary in equilibrium with its surrounding medium. the hydromagnetic buoyancy force counter-
balances the gravitational force exerted by the massive Sun. When the coronal magnetic field

olVeS. the cnanged diamagnetic forco "o ..ge. matches the gravitational force. Once the
forces become umbalanced. the prominence is initiated into motion. The evolving motion

may be either upward or downward, depending on whether the hydromagnetic buoyancy

force is greater or less than the gravitational force. That the evolving motion of prominence

filaments is driven by the instability evolution of the global magnetic field has recently in-

ferred from observations tKahler et al.. 1988).

In this paper we apply the dynamical theory to study the motion of the top section of a

prominence loop arched above the solar surface. The calculation presented is mathematical-

ly one-dimensional in space (viz.. the heliocentric distance) although it involves two dimen-

sional geometry (see Figure 1). The governing equations for the dynamical evolution are

M HD equations of motion supplemented with equations of mass conservation, flux conserva-

tion, and energy conservation. Since we are mainly interested in the dynamics of promi-
nences. cnergetics is dealt %%ith only to the extent necessary to provide a dosed system of

equations tor the dynamics. .\ccordingly, in our present calculations we neglect all entropy-

generating processes that atie pertinent to the thermodynamics of prominences.

Several illustrative examples of dynamical evolution of a prominence loop are shown.

First. \%e construct an equilibrium configuration for a prominence loop immersed in a coronal
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medium that has a bipolar magnetic field permeated into a magnetohydrostatic atmosphere.

For a prominence. op to be stationary, it must have neither translational motion as a whole

nor expansional motion relative to its axis. The former requires that the downward pull of the

gravitational force exerted by the Sun is counterbalanced by the upward lift of the hydromag-

netic buoyancy force exerted by the surrounding coronal medium. The latter requires that the

outward push of the pressure gradient due to the difference in internal and external gas pres-

sures is counterbalanced by the inward pinch of the Lorentz force density due to the internal

currents. Next, we calculate the motion of the prominence loop when the equilibrium is dis-

turbed by the temporal change of the bipolar field. The change can be caused by strengthen-

ing and/or displacement of the magnetic monopoles for the bipolar field. These examples

demonstrate .iat tile prominence can move away from the solar surface when the distur-

bances are sutficientlv large.

The miodel calculations illustrate the mechanism involving hydromagnetic buoyancy

force that is likely important in the eruption ufproininericcs. Such calculations in conitnctinn

with analytical study also serve to narrow down the ranges of the parameters as an aid to

MHD numerical simulations of the eruptive motion of prominences. Very often the difficul-

ties with numerical simulations lie in the large number and extensive range of the pertinent

parameters that characterize the phenomenon under study (Wu. 1988).

2. Assumptions

Fhe geomet-,y of the prominence loop may be described by its axis and its cross-section.

We assume that the varing, cross-section is well accounted for bv a circular cross-section

whose radius changes in time. In this treatment of the top section of a prominence loop, a

prominence is represented by a flux rope with a straight axis, whose heliocentric distance may

change. The corona is represented by a magnetized medium that has a transverse magnetic

field. nernenuicular to the axis of'the prominence, which is bipolar and a longitudinal mag-

netic field. parallel to the axis. \which varies ,ith the heliocentric distance only. The current

that produce., the bipolar f lid is oin the solar surface, to be accounted for by a couple of mag-

netic monopoics on the photosphere. These monopoles are chosen to be line monopoles to
make tie r'-oblem two-dimensional. The current that produces the longitudinal magnetic
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field is in the corona. The coronal current is in magnetohydrostatic equilibrium with a strati-

fied gas pressure of the gravitated coronal gas.

The prominence loop carries helical field lines. The helical magnetic field in the straight

prominence is represented by

BF = BO -C, + 1 iJ0 q (1)

in cylindrical coordinates (z. q. o). with the azimuthal angle 4 measured from the radial line

pointing downward (i being the magnetic permeability in inks units). The axial component

decreases from tile axial value B, at the axis q=0 to zero at the boundary q=Q. The azi-

muthal component increases from zero at the axis to the boundary value B - -'JQ at the

bounuar,. T.c total axial fluX i. 'E .-- Q2B() and the total azimuthal flux is 21J, per
34

unit axial length. This helical field is produced by the current density

JF = lz J0 + l, i'1 B, q(Q. ~7 ('-'(1_q2/Q2,}TY P2

which has an axiai component that is uniform and an azimuthal component that increases

from zero at the axis to infinity at the boundary. The total axial current is I. -TQ 2 j( and the

total azimuthal current is i- I B, per unit axial length. The Lorentz force density

,-) c - - .: (3 )

acting at various mass elements ol the prominence is in the radial direction. perpendicular to

the axis of the prominence loop. It increases from zero at the axis to -l B, 2/Q - at

the boundary, in proportion to the radial distance. The axial current produces a pinching

force towaid the axis whereas the azimuthal current produce-s an anti-pinching force away

from the axis.

The immersion of the prominence loop in the coronal medium incurs a polarization cur-

rent that keep.s the helical hield lines separated from the external field lines of the corona. The

induced current. \%hich iS concentrated in a thin peripheral layer byvirtue of the high electri-

cal conducti\ it, of the solar plasma. produces a magnetic field that makes the ambient field

tangential by cancelling the iadial omponent of the coronal field on the interface and essen-

tially doublinc the azinutnal component there (Yeh. 1983). With the coronal mass density
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po, the coronal gas pressure p,,. and the coronal magnetic field B- = 1, + B,.L pre-ex-

isting at the site of the prominence, the ambient magnetic field on the outer surface of the

current layer is

B (6) = I I - 1( 2 (+ 1 Bo±)1q=Q + 1 (4)

The boundary magnetic field on the inner surface is

Si. (5)3(¢=152+rQ

The polarization current. given by ilp 1qx L-1 (BA-Bt) per unit circumferential length,

shields off the coronal field from permeating into the prominence. Across the massless layer

ot peripherai .urrent the Sumn ot gas pressure and magnetic pressure is invariant. The ambient

gas pressure

() = P (6)

on the outer surface is essentially equal to the pre-edsting coronal gas pressure at the periph-

ery since the gas pressure in the external region is hardly perturbed by the intrusion of the

prominence. The botlndjry gas pressure

1) 4)=--i B + 2W'B 2 c os7 b +Cos4 (7)001 i= C11C OqL q=Q ' Q q=_

on the inner surtace has a Jrcumtcrential inhomogeneity which is spatially transformed from
that of the ambient hydromagnetic pressure. The gas pressure inside the prominence is well

represented hy
P.jq. q;" = [P,-(IP+ ,J'tl?,, I'. ]( - q'-' )+ p¢(q+ ",)+4-'~B (q, 4)+W+'lVZg(l, .4)': + + W" 13
+: +  cos-( 2 o,-++ B: I O~-- 1 ,) -TQ _ , 1-g .c.- (8)

q= q=Q q=O q=()

It varies from the axial \aluC p, at the axis to the boundary value 1),. The gradient ot this gas

pressure yields the' lorce density

I,. B _ 2P,-(2P,,+ j1  o Iq 2
-r'.'pJ = -'v'(PIj- ±V z'--l lt _ )+1 r cQ ("' (9)

ignoring insinificant terms. Ilhe lorce term proportional to q/Q represents a radial force
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density that results from the difference between the internal gas pressure and the circumfer-

ential average of the exte: n,l hvdromagnetic pressure. The other terms. resulting from the

circumferential inhomogeneity of the ambient hydromagnetic pressure. represent the spatial

spreading ot :he hydromagnetic buoyancy force. the latter amounts to IrP GM ./r, 2 +

lrrg-I B3,jL, R: I I.x B,!/rQ 2 by virtue of the magnetohydrostatic state of the coronal me-

dium (see Equations (27) and (21)). The coefficient F has the value of 2 in the above elucida-

tion.

The prominence moves with the velocity

uE = Uo + lqV- q (10)

which consist., ot a translational velocity common to all mass elements of tile prominence

loop and an expansional velocitn proportional to the distance from the axis. The translational

motion is driven by the part of the force density that is uniform and the expansional motion is

driver. by the part of the force density that is in various radial directions. The former part

includes the gravitational force ;xerted ., the Sun and the hydromagnetic buoyancy force

exerted by the surrounding medium. The latter part includes the Lorentz force that results

from the interaction among the internal currents inside the prominence and the gradient

force that iesults from the difference in the internal and external gas pressures.

The dynamical evolution of the prominence depends on its inertia. We assume that the

mass density is uniform over tie cross-section. ignoring the higher-order effect ot the spatial

variation ol the mass distribution. The value of mass density pi may change in time.

-- - 3. Governing Equations

A promnnence which is located initially equidistant from the two magnetic monopoles

will remain so %%hen its heliocentric distance changes temporally. The prominence loop is

characterized by en-ht parameters: r,). 0, u, \ P1,' 13,. J,. and p.

The chaiacterlzinIg parametirs evolve in accordance with the differential equations:

J r, = u) . (11)
d t

d 0 = (12)
dt
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GK + (13)

d = 2P) + i-'B, -2p,,+4B,+42Q2 (14)d t Q Q

supplemented by the temporal invariances of the total mass, the axial magnetic flux, the azi-

muthal magnetic flux. and the total thermal energy:

Q2p, = M (15)

T-(QB= (16)

)2 , _" if- (17)

4 P tpo+ I-1512 (18)

For a prominence to be initially in stationary equiibriun wvith the surrounding coronal

medium the requisite current density ib

P.- P GMe r P7-BBL (19)
Boo,_ ro" Re

in terms of thL mass density (or the requisite PE in terms of the current density) and other

quantities. Thei requisite magnetic field is

-00 Jo -2OQ L,) (20)

(in either direction) in terms of the gas pressure (or the requisite p, in terms of the magnetic

field) and other quantities. The first constraint makes the upward hydromagnetic buoyancy

force counter alance the downw,'ard gravitational force. The second constraint makes the

outward forte., due to the gas pressure and the axial magnetic field of the prominence coun-

terbalance t w rnvai d forces due to the hydromagnetic pressure of the ambient medium and

the axial cur rent of the prominence.

4. Coronal Medium

We choose the line monopoles for the bipolar magnetic field to have the strengths ±-P,

and an an-uiar separation of 2 .,, ubtended at the center of the Sun. The two line mono-
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poles produce the bipolar magnetic field
B" = i 1n B_ (21)

in the midplane between them. Its direction, from the positive monopole to the negative

monopole. is perpendicular to the midplane. Its magnitude is

=g Re sin 0., (22)
r__ RO Slfl O jr-- r.. r PcosN. (22)

at a heliocentric distance of r. [here, the associated magnetic pressure has the gradient

-V41' = 1 Z (23)

:n the vertical direction. with the radius-of-curvature
r rcosO+R (24)

" :. r - R. cOOM

for the circular tield line. (By virtue of the current-freeness of the bipolar field, the gradient

force of its magnetic pressure is exactly opposite to its tensile force density.) This magnetic

pressure gradient is enhanced by a factor

2

(I Q2/q,\,)((1 Q2/q.) 2 + 4(Q2/q) sin (25)

by the polarization current

Sq\(Q2 +q2 ) COS - 4Qqc COS.
ii) = i) ,1- Is. 0-2 cos(b . (26)

Here qIM (r,,-r,) lcos O,+ l) is the distance from the prominence to either mono-

pole and n (R ain e, .'q\) is the azimuthal anglc for the monopole. The field strength

Pl.m increases with "VM and maximizes when cos 0. is equal to 2rR, /(r2 + 1i). In. :erms of the

field ,,trength on the .,olar s tif'ice midway between the two monopoles. the monopole

strength has the value

,,._ 1 -c, s t),, 3 o _II- = so, R (27)

T'he monopoie ,trength Pt and the separation angle 0.. may undergo temporal changes.
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We choose the longitudinal magnetic field

= 7 B, (28)

produced by the coronal current to be horizontal. The associated current density is

n1.- dbl' J Jr. It provides a magnetic force in the force balance

.r t p1,§rB2 (29)
dr - cq, P

between the gravitational force and the gradient of hydromagnetic pressure. In addition to

the equation of force balance, two more constraints are needed in order to determine the

vertical variation of the coronal mass density., gas pressure, and longitudinal magnetic field.

We shall asume that the gas pressure varies in proportion to the mass density and the magnet-

ic pressure varies in proportion to the gas pressure. viz..

P = KT,,p . (30)

B2oI POO (31)
, r=Rl

These assumptions ensure that the pressure and mass density decrease with the heliocentric

distance. 1he constant'F. T ignifies the coronal temperature (K being the gas constant for the

solar plasma). These assumptions allow us to calculate the mass density by numerical integra-

tion of the differential equation

d , = _I GM P~ (32
T-00- T, r: (32)

dr~ - i. , -,'B_ r=R/ Pl KT r

from the solar surface.

5. Conditions for Upward and Outward Accelerations

For the translational notion to have an upward acceleration away from the Sun. the hy-

dromagnetic buoyancy force must overcome the gravitational force. The former will exceed

the latter it the bipolar held is suthicientlv large so that
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,1 >. , 1/2 re PJ . (33)
4+i-- pr( J,) Ri r

On the other hand, for the expansional motion to have an outward acceleration away from the

axis. the outward force must overcome the inward force. The former will exceed the latter if

the surrounding medium has a hydromagnetic pressure sufficiently small so that

1, -h-, 2 < P0 + 1 B2 1 L2 (34)

p -,+ 2 0 - J 0 Q (

Upon the use of the equilibrium values at t = 0 and the conservation invariants. tile condition

for an upward acceleration can be written

IM ('l-'" " - ( c / q ' ' (Q / ()I= '  (35)

-, .- ,0

if we ignore the higher-order part of the dianiagnetic force associated with the pre-existing

gradient of the coronal magnetic pressure. The condition fot an ouLward acceleration can be

written

p 2 K[1 < _ I +.+, .' j,- 11,311

_,91j 1 ( .1,=, 1-  (Q11= 2+• (36)
S t- =o - Q )

It follows trom the inequality (35) that in the region where p. is small, the translational mo-

tion %%ll hake an upward acceleration when the encountered bipolar magnetic field ,_ (t) is

not less than its initial value by a factor of (ro1 to/r))2. On the other hand. it follows from the

inequAltv ,) that the expansional motion will have an outward acceleration in the region

where 1 -_ 'A-.,, is less than its initial value when Q(t) is less than 01,=,, and in the region

where 1)- - 2 P,,3ois -ufficiCntlv less than its initial value when 0(t) is greater than Ol=1

6. Numerics

iinmks uits. the magnetic permeability has the value It = 47rx 10- 7 T in J, the gravita-

tional constant times solar mass has the value GM. = 6 .67 x 10- N-m /kg )x( 1.99x 10
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kg), and the gas constant for the proton-electron plasma has the value K=(l38x 10-13J/

deg)+ 1.67 x 10- 27kg + .11 x 10 31 kg). To facilitate the numerics, we choose to measure

time, ltngth, and magnetic field in the units of one hour, one helioradius. and one gauss, re-

>pecti'el\'. \z.. ct =3.6x 103 s. r ref = 6 .96x 10 in. and B T = 0- W We further choose to

measure speed. mass density, pressure. current density., and temperature in the units of

r f 13-  f(r e f) j1- B , j . B ref/rref, and (rrf/t rf)/K. Namely. ur,=193.3

km/s. Po = 2.129x1-13 kg/m3(corresponding to 1.2 74x 108 electrons/cm ), P ref =

7.958 xi - J 'm3 . J r~f = I. 143 x 10-7 A/m, and T 2.26 3 x 10 deg.

In ihese normalized units, both the magnetic permeability. ,iven by

e4,rx W- nJ l1:n'iJ /(rr.ef, and the gas constant, given by (1.65x!O 4 J/kg/

deg)/(u L-., ). have the numerical value of unity whereas the gravitational constant times

solar mass has the numerical value of 5.102 he!,er:,dnus ihor given by

(1.333 x i) ' m /s )/(r ref re

7. Illustrative Examples

For the inagnetohvdrostatic coronal atmosphere. v~e choose a mass density of

3x 10' cLctrons/cm , a temperature of 2 x i)6' 0 K (hence T. = 0.8838) and a longitudinal

magnetic thicd of 2 gauss at the solar surface. For the magnetic monopoles. to have a trans-

verse magnetic field of' 10 gauss at the solar sarface midway between the two monopoles. we

choose

tI = .497 gauss'helioradius . 0, = 0.

The calculatcd profiles are shown in Figure 2.

I 1 7tationa ry prominence loop. we choose a height of 5xLO' km. radius of

2X I(0" kim. a mass density of 5 10)l" electrons,/cm .and a temperature of 5x 1() °K so that:

= 1.0718. Q = 0.02874 . - 3924.2. p,= 86.704 .

At the ,i tc viere the prominence resides we have

= 16.535. po = 14.614. R, 1.676 . l3.j. = 8.054
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The conditions of force balance require:

j,) = 2080.9, B) = 40.574

In other words, for the prominence loop to be in stationary equilibrium with the surrounding

medium, it must carry a total axial current I, of 3.Ox 1011 amperes and carry an azimuthal

current that sustains a total axial magnetic flux 'V, of 3.4 x 1012 webers. These values are with-

in the ranges of typical ,alues for quiescent prominences (Tandberg-Hanssen. 1974). It is

seen from

PjrG = 17428.7. R0G -=,73.61. 1EB- = 16759.7. 595.4
- r,) r .n-r2 T

that the gravitational force is largely counterbalanced by the zeroth-order diamagnetic force

(due to the prominence current). The hydrostatic buoyancy force is very small, accounting for

only 0.42%. Even the higher-order part of the diamagnetic force (due to the inhomogeneity

of the coronal magnetic field) is small. only 3.55% of the zeroth-order part. On the other

hand. it is seen from

P0 =86.704. --f B, 823.14, - 9JQ = 893.82. p,,= 14.615, _!-B, = 1.405

that the pinching force of the axial current is largely counterbalanced by the anti-pinching

force ut the azimuthal current and to a less extent bv the internal gas pressure. Ilhe ambient

hvdromnagnetic pressure provides only a very small pinching. To facilitate comparison, these

values may be translated to (25pcJ'2=5.4063 gauss. -/LJ 0Q =29.903 !auss. and

(2 4 p,,) = 13.168 gauss. The plasma beta at the axis is 0.1053. The transverse projection of

the ticld lines in the equilibrium configuration is as sho%, n in Figure 1. \Vith the ratio

= 0.9684. the bipolar field has two neutral points located at q = 0. 18. = ±-118.7 . Figure 3

,,ho.,, the Iprinneral distribution of the polarization current with q%1 = 0.194 and c.,. = 63.40.

It flows in the direction of the prominence current in the lower periphery I tfl < 82.60 and

flows in the opposite direction in the upper periphery. It is zero at the two points where the

two nCutralI points would be located in the case IE happens to be zero. Of course. the total

polarization current sums up to zero.
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Now. we consider the motion of the prominence loop when the equilibrium is disturbed.

We consider motions caused by temporal changes of the bipolar magnetic field due to the

strengthening of the monopoles. Figure 4 shows the evolution caused by

d V.t = -0.0 gauss . helioradius/hour for 0 < t < 10 hours
d t

The initial increase in the bipolar field makes the hydromagnetic buoyancy force exceed the

gravitational force, so that the prominence rises from its equilibrium position. The promi-

nence keeps moving upward, even during 0.6 < t < 3.5 when the hydromagnetic buoyancy

force i , not large enough to cause a small deceleration. Likewise. the radius of the promi-

nence keeps increasing. Its rate of increase is small in this case because the encountered

coronal hvdromanetic pressure decreases very slowly. To see the dependen:e on the

,,trencth ot disturbance. we show in Figure 5 the evolutions caused by smaller values of

d.,/dt. It is seen that the prominence may move up and down if the disturbance is small.

With a sufficiently large distiubance. the prominence will move away trom the Sun.

8. Discussion

For a prominence to be in equilibrium with the coronal medium. the six parameters r, Q,

). B,,. J.,. and p, that characterize the property of the prominence loop are related by two

\.onstraint,.. I'hev determine two of the parameters in terms of the remaining tour parame-

ters. We depict these constraints by showing the requisite values of-' /aQJ, and B, 'or various

values ot r,. Q, P_. p0 P,, T, B,.,, and B,,_, in the neighborhood of the equilibrium used in

the example (see Figures 6 and 7).

Figzure 0 shows the variations of the requisite values for equilibria vhen the height, the

,ize. the mass density, or the gas pressure of the prominence has othervalues. Both the requi-

site currIent and the requisite magnetic field are larger for a prominence at a greater height if

the pi omi nence is not located very close to the solar surface. This is so because the bipolar

magrnetic held decreases in heighlt faster than the solar gravitv when tile height is above a cer-

tain value. I'he increased pinching force due to a larger requisite current requires an increase

in the lelulsIte magnetic held in order to have a matching outward force. Next. a larger value
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of the prominence radius increases the boundary magnetic field although the requisite promi-

nence :,urrent density remains the same. The increased pinching force is to be counterbal-

anced by ,in increased anti-pinching force to be provided by a larger axial magnetic field. On

the other hand, a larger value of the mass density of the prominence requires both a larger

prominence current and a larger magnetic field. The increased gravitational forv'e is to be

matched Ly an increased diamagnetic force for counterbalancing. The consequential in-

crease in the pinching force is matched by an increase in the anti-pinching force to be pro-

vided by a iarger axial magnetic field. Finally, a greater value of the gas pressure in the promi-

nence ieuuires a matching decrease in the magnetic pressure so that the total hydromagnetic

pressure is kept unchanged.

t- ULII - ,hows the variations when the coronal mass density. temperature, lgnuitudinal

magneuc ::eld. or transverse magnetic field at the site of the prominence has other values. A

larger value tf the coronal mass density requires a .smaller prominence current and a larger

gas pressure in Lhe pominiience. The increased hydrostatic bu yancy force due to a larger

coronal mass density necessitates a smaller diamagnetic force (to be provided by a smaller

prominence current) so that together they provide the same upward force to counterbalance

the unchanged downward gravitational force, The increase in the pinching force due to a

larger anbient pressure (the decrease in the pinching force by a smaller prominence current

being ,,:Ler .mall) necessitates a larger anti-pinching torce to b~e provided by an increased

axial maunctic field. Next. a change in either the coronal temperature or in tile longitudinal

magntic rield of the corona does not affect the required prominence current because the

balancing between the gravitational force and the hydromagnetic buoyancy force is not af-

fccted at all. Iltowever, the change does affect tlie-requisite axial mag'netik field..\ larger

value W :he .oronal temperature or the longitudinal magnetic field makes the ambient hvdro-

magnet,: r: essure larger. The increased pinching force is to be matched by an increased anti-

pmnchinuz !iucc to be provided by a larger axial magnetic field. Finally, a larger value of the

transc-,.: magnetic field of the corona requires a smaller prominence current in order to

produ.,. Ile., same diamagnetic force to counterbalance the unchanged gravitational force.

Vhe .n,,uential decrease in the pinching force necessitates a decrease in the axial magnetic

tield in ( ider to produce a smaller anti-pinching morce in the equilibrium.
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In the illustrative examples. not only in the equilibrium but also during the motion, the

hydromagnetic buoyancy force is largely dominated by the zeroth-order diamagnetic force

TExBO. The higher-order part of the diamagnetic force due to the inhomogeneity of the

coronal magnetic field only amounts to a few percent and the hydrostatic buoyancy force is

even much smaller. Their percentages diminish in heliocentric distance. Thus, without the

action of the zeroth-order diamagnetic force due to the prominence current, prominences

are not able to move away from the solar surface.

Actually. when the prominence is close to the photospheric surface, the diamagnetic

force is enhanced by the mirror-current effect (Kuperus and Raadu. 1974). The polarization

current induced on the photosphere will exert an additional upward force on the prominence

currenrt in the amount of 1 2 Rj2/27rro(ro2-R) (cf. Van Tend and Kuperus. 1978). Inclusion

of this force will modify Equation (13) to

d ,GN +fP Q2p 2U0% = ' " - q' Q R (7)
r r 0 RC  2r 0(rJ _ 1(7

Accordingly, for the prominence in the illustrative example the requisite current density re-

duces to ,tj = 1426.5 and the requisite magnetic field reduces to B = 26.44. With the mono-

poless u engthening at the rate of dk'jdt = 20, the disturbed prominence rises slightly slower.

See Fiuure S. This is due to a smaller prominence current. The reduced ltIBOO" is not suffi-

ciently compensated by the added I .2 R/2rr(r2 -R ).

In conclusion, the calculations show the importance of the hydromagnetic buoyancy force

in the dynamics of prominence loops. - . ....
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CAPTIONS

Figure 1. Magnetic configuration resulting from the interaction between a couple of mag-

netic monopoles on the solar surface and a large current carried by the prominence, with a

polarization current induced on the interface.

Figure 2. Profile of a stratified magnetohydrostatic corona at 2x 106 'K, with a mass density

of 3 x 109 electrons/cm , a longitudinal magnetic field of 2 gauss and a transverse magnetic

field of 10 gauss at the solar surface.

Figure 3. Peripheral distribution of the polarization current in the equilibrium configura-

tion.

Figure 4. Temporal evolution of the prominence as the monopole strength changes in time,

with dNY/dt= 20 gausshelioradius/hour.

Figure 5. Temporal evolutions of the prominence for disturbances with various values of

dP\!/dt.

Figure 6. Requisite values of +-tQJO and B0 for an equilibrium prominence with various

values of r0, Q, Pr, or p0.

Figure 7. Requisite values of tQJ0 and B,, for an equilibrium prominence in a coronal

medium with various values of P., To, Bo,,, or P:L.

Figure 8. Temporal evolutions of the prominence v,ien the mirror-current effect is included

in the hydromagnetic diamagnetic force, with dP\1,/dt = 20 gauss'helioradius/hour (thick

lines). Dashed lines indicate the corresponding evoltion without the mirror-currents.
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ABSTRACT

A spheroidal plasmoid is injected into a representative steady state solar wind at the lower

computational boundary of a 3-D MHD model at 18 solar radii. The field line topology of the

injected plasmoid resembles the streamline topology of a spherical vortex. Evolution of the

plasmoid and its surrounding interplanetary medium is described out to approximately 1 AU

for three cases with different values for the velocity imparted to the plasmoid.

In the first case a plasmoid is injected with a velocity equal to that of the steady-state back-

ground solar wind at the lower boundary (250 km s-1 ). In the second and third cases, the plas-

moid is injected with peak velocities of twice and three times the background velocity.

A number of interesting features are found. For instance, the evolving plasmoid retains its

basic magnetic topology, although the shape becomes distorted. As might be expected, the

shape distortion increases with the injection velocity. Development of a bow shock occurs

when it is injected with a velocity greater than the sum of the local fast magnetosonic speed

and the ambient solar wind velocity. The MHD simulation demonstrates magnetic draping

around the plasmoid.
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INTRODUCTION

Solar radio heliographic evidence (Riddle, 1970; Smerd and Dulk, 1971; Stewart et al.,

1982) suggests that plasmoids are injected into the interplanetary medium during flare and/or

eruptive prominence episodes. Riddle (1970) and Smerd and Dulk (1971) reported opposi-

tely-polarized radioheliograph sources during a westward-ejected plasmoid on 1-2 March

1969. Riddle (1970) estimated densities in the source region as Ne >-. 6 x 106 cm- 3 at both 2

Ro and 5 Re, where R0 is the solar radius, 6.95 x 105 km. He also estimated magnetic fields

of H t 0.8 G at 2 R 0 and H 3 0.08 G at 5 R. Riddle suggests a configuration analogous to

a smoke ring puffed out from the site of the flare. Smerd and Dulk hypothesized that the

internal field structure was carried with the plasmoid into interplanetary space. Stewart et al.

(1982) detected a plasmoid on 27 April 1980 with the Culgoora radioheliograph; the meas-

urements strongly suggested the presence of closed magnetic fields within the plasmoid.

Based on the plasma emission mechanism (from a hot, dense, magnetically confined configu-

ration), they estimated the field magnitude to be > 0.6 G at 2.5 R0 . They also estimated the

densities to be 3.5-5.7 x 10' cm - 3 ± 30%. More recently, Gopalswamy and Kundu (1989),

with the Clark Lake radioheliograph, inferred the presence of a slow-moving plasmoid fol-

lowing a flare on 2 February 1986. Assuming the presence of gyrosynchrotron emission at 50,

73.8, and 138.5 MHz, the plasmoid's electron density was estimated to be on the order of

10i _106 cm-3 ; the magnetic field magnitude was estimated to be 1-2 G.

Draping of IMF lines has been postulate 4 (Gosling and McComas, 1987: McComas and

Gosling, 1988) to occur when a CME or a plasmoid plows through the interplanetary me-

dium, stacking up IMF lines on its front side. The nature of such draping was considered in

these papers. Additional studies that support these ideas are also presented by McComas et

al. (1988), who examined draping beyond 1 AU, and McComas et al. (1989), who proposed a

test of IMF draping based on in situ measurements. The present exploratory numerical study

war done to examine the stability, evolution and draping associated with one possible mag-
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netic configuration for such plasmoids. In this paper we are not considering "rope-like" mag-

netic configurations which have been invoked to explain the interplanetary "magnetic cloud"

observations of Klein and Burlaga (1982). It also is important to make a distinction between

the numerical simulations discussed in this paper and those made in the 1970's (Wu et al.

1978; Dryer et al, 1979) for coronal transient behavior. The latter works (and a number of

related studies, e.g. Steinolfson and Hundhausen, 1988) demonstrated that magnetic field

lines will be distorted and forced (by virtue of high conductivity) around ejecta similar to that

in CMEs. In these simulations of the initial boundary value problem, the time dependent

coronal behavior was initiated by a change of thermodynamic properties (i.e. an energy in-

crease) in or around a localized region at the boundary of the computational domain- the

base of the corona, for example. The present study is physically different. The perturbing

agent is a "projectile" that is injected with a prescribed momentum into the pre-existing solar

wind flow. As noted in recent reviews (Burlaga, 1989; and Gosling, 1990), no dynamical nu-

merical simulations have yet been made of the coupled plasmoid-solar wind, "projectile"

problem. Preliminary results of the work presented here were described in Dryer et al.

(1989). There are three primary advantages of MHD simulations: (1) they present global,

rather than local views of the interaction; (2) they are dynamic; and (3) they are intrinsically

quantitative, rather than qualitative, in their results.

In this paper we first discuss the method of computation, followed by a discussion of the

results for several cases of plasmoid injection. We conclude with some remarks on the plas-

moid deformation, on the topological changes caused by numerically induced reconnection,

and on the draping of the IME
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METHOD

Our 3-D model (Dryer et al., 1986; Han et al., 1988, 1989) has a computational domain

with the lower boundary at 18 R®, the upper boundary at 225 Ro, and the side boundaries

covering 90* of latitude centered on the equator and 90* of heliographic longitude. The grid

resolutions are respectively 3 R0 in radius, 30 in longitude and 3* in latitude; thus the nu-

merical gird is 70 x 31 x 31. The model uses the two-step, Lax-Wendroff finite difference ap-

proximation to the equations of ideal MHD with the addition of artificial viscosity (Han et al.,

1988). Our model uses the pseudo-conservation form of the equations to be solved:

au + a.F_ + 1 aG + 1 ail_ S, (1)
at aR R sineaT R sinOOa

where U is the variable vector, F, G, and H are flux vectors and S is the so,,rce vector (Han et

al., 1988). Equation (1) expresses the induction equations, and conservatfon of mass, mo-

mentum and energy, without thermal conduction. Thus, except at shocks, the plasma behaves

adiabatically. Due to the use of the pseudo-conservation law form, the Rankine-Hugoniot

conditions are satisfied at any shocks which develop. This scheme is, however, inherently dif-

fusive and requires added explicit numerical diffusion (artificial viscosity) to stabilize it if any

shocks are present. The combination of inherent and explicit numerical diffusion causes

shocks to spread over 5 to 10 grid points and facilitates magnetic reconnection when oppo-

sitely directed fields are compressed together. All input to the computational domain takes

place at the lower boundary. The lower boundary is chosen at 18 Ro because it was just be-

yond the critical points of the representatively chosen steady-state solar wind. There is noth-

ing special about this location other than that the flow there is both supersonic and super-

alfvenic.

We begin with a representative, steady-state solar wind. Steady-state conditions at 18 RE

were selected by trial and error to obtain a match with observed conditions at I AU. See, for
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example, Han et al. (1989). The IMF is assumed to be unipolar (outward) everywhere. Thus

this model contains no magnetic sectors and no heliospheric current sheet. The plasmoid is

introduced by a time-dependent perturbation of the lower boundary surface at 18 R0 . Con-

sider a plasmoid moving away from the Sun. Conditions on the surface at 18 Rbwill be per-

turbed in a particular way as the plasmoid moves across that surface. We perturb conditions

on our model's lower boundary at 18 R. in just such a way.

The configuration of the plasmoid is analogous to the Hill vortex (Hill, 1894; Lamb, 1932)

in fluid dynamics; i.e., the magnetic field lines have the same topology as the streamlines in a

smoke ring. Thus we are exploring numerically the suggestion made by Riddle (1970). Spe-

cifically, Hill's spherical vortex (Milne-Thomson, 1955) is described in terms of a Stokes

stream function,

-3 (1 ' r

4- - V - 2 )r 2 sin2O' (r < a), (2)

which represents inviscid fluid motion within a sphere of radius a, in spherical coordinates (r,

01, 49 ) centered on the sphere. Vis the (constant) flow velocity far from the spherical vortex.

The stream function yields the velocity within the spherical vortex:

r22-[ra2) Cos of (0 (1-2" 72) sin 0 t](3)

Therefore the radial velocity is zero at the interface, r=a.

The vorticity, t is given by

A 15V
a, r sin 0' (r < a). (4)

Thus the vortex lines are circles perpendicular to the axis of symmetry, and the vorticity has a

constant value on any such circle. This Hill's vortexis surrounded by a fluid that streams past it
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with a velocity, V. The tangential velocity is continuous at the interface r =a. Stagnation

points exist at the leading and trailing polar points (01 = 0, 7r) of the sphere, and a ring vortex

exists at r = a/21/ 2 and 0' = 7T/2. The motion of the fluid outside the spherical vortex is the

same as if the sphere were a solid sphere of the same radius. The stream function for the

external flow is

t= V (1 - 3) r Zsin0 (r > a)(5

In a contour plot of *, such as Figure 1, contour lines correspond to streamlines.

We have used this classical fluid vortex as the analog for our magnetic plasmoid. Specifi-

cally, we take *V to be a flux function instead of a stream function which then yields magnetic

field instead of flow velocity. Also the perturbation which injects the plasmoid into the model

must be specified in time and the heliocentric spherical coordinates of the MHD model 0 and

4) on the R = 18 Re surface such that axial symmetry is maintained. Current density is the

analog of vorticity and we have two neutral points analogous to the stagnation points of the

Hill vortex. Current in the plasmoid flows in a loop around the axis of symmetry which points

in the radial direction away from the Sun. Thus, the stream function for Hill's vortex is used to

describe a magnetic plasmoid. The magnetic field at the center of the sphere reaches a peak

value of-3/2 times the steady state value (150 nT), i.e. the field in the center of the plasmoid is

toward the sun, while outside the plasmoid the field is directed away from the Sun. In adapt-

ing the Hill stream function to generate a magnetic plasmoid we made two significant altera-

tions: (1) we constrain the perturbation to be limited in both space and time: and (2) the con-

figuration of our plasmoid has both poloidal and toroidal field components. The magnitude

of the poloidal component relative to the toroidal is arbitrarily set at a factor of 1/10. Figure 1

shows only the toroidal component. We have not considered other ratios. A plasmoidal field

191



line is like a "slinky" toy with the two ends held together. The final flux function for the field

outside the plasmoid is:

V -- - a3 (b-r) )r sin 201 (a < r < b) (6)

)2 ri 2 Ia(r-b ).

The toroidal field component has the form:

S rB, BO(1 - ) -: sin 0 ( r < a ), (7)

where Ba is the steady state value of the radial component of the IMF For this study we have

chosen a = 18 Ro x 180 = 3.9 x 106 km, see Figure 1 (b), and b = 2a. The density and

temperature inside the plasmoid are taken to be 1.4 x 103cm-3 and 1.1 x 106 Krespective-

ly, the same as the background values at the input location, 18 R 0 . There the sound speed is

174 km s- and Alfvn speed is 87km s-'. Thus the 250 km s' steadystate flowspeed at the

lower boundary is super-sonic and super-Alfvnic.

We present three cases. In Case One, the plasmoid enters the grid with no change in veloc-

ity from the steady state. In Case Two, the velocity at the center of the plasmoid reaches a

factor of 2.0 above the steady-state velocity;, and in Case Three, 3.0 times the steady-state

velocity. A cosine profile is used to smoothly taper from the peak velocity at the center of the

plasmoid down to match the steady state velocity at a radius b from the center of theplasmoid.

Since we have made modifications to the original stream function as desaibed by Hill e.g.

the spatial confinement described by (6), the toroidal component described by (7), and the

velocity perturbations described in the preceding paragraph, it is possible irAt our final input

boundary perturbation may no longer be strictly solenoidal. We investigated two methods of

enforcing solenoidality on the input boundary perturbation, so as to avoid intrnducg zg- V

netic monopoles into the grid. The first, described in Yeh and Dryer (1985) is based on Fata-

S92 Copy ~ogla.blo to ITIC does Ao1
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day's law of magnetic induction applied te the model boundary at 18 R0 . We implemented

this method in an iterative scheme which adjusted B Ron the lower boundary until Faraday's

law was satisfied. The second method, the one we settled on for all computations described

herein, is more direct, but involves field quantities inside the grid. We start with the second

order centered difference formula for V. B at I = 2, the first interior radial grid position. We

then solve this for BR at I= 1, substituting 0 for the value of v • B. This gives,

R2
R2 BR(3,J,K) + (ABo+ ABO) (8)

Bp.(1,J,K) - (A-e +gB '(8

where

= (sin 01+ 1Bo,+ - sin~j-1 Bo,_)

2R2A0 sin 01

AB _Br - BOK_)

AB0 = 2R2AO sin Oj

Here BR(I,J,K) is the value of BR at grid point (I,J,K) where I, J, K are the grid indices in the R,

0, and 4 directions respectively. We use (8) to find BR for all points on the lower boundary at

each time step, i.e. for all J and K. This guarantees that v. B = 0 at I = 2 at each time step.

Any departures from v. B = 0 further inside the grid are thus due only to numerical error,

which is discussed below.

The validity and accuracy of the numerical method used for this study are discussed by

Han et al. (1988). In addition, we made several diagnostic checks to asess the validity of the

numerical calculation. In the first check, we computed the total energy within the entire com-

putational domain for the exceptionally stringent Case Three. The total energy in the model

grid (the sum of kinetic, thermal, magnetic, and potential) increased smoothly from the back-

ground value of 5.73 x 1031ergs at t = 0 h to 6.18 x 1031ergs at t = 15 h as the plasmoid was
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injected. Total energy then decreased slowly to 6.15 x 1031ergs at t = 48 h. Plasmoid injec-

tion thus added 0.45 x 1031 ergs to the model grid, and 0.03 x 1031 ergs were subsequently

lost (some through the sides of the grid). This indicates conservation of energy to 0.5% of

total energy or 7% of the added energy. We consider this satisfactory. In the second diagnostic

check, we estimated the effect of numerical round-off, etc., on the requirement of

solenoidality (v. B = 0). For this purpose we calculated the total (fictitious) monopole force,

By. B, and compared it with the Lorentz force, (v x B) x B as a function of time. The result

was that the former was typically 1% of the latter, indicating a very acceptable level of non-

solenoidality in the computation. The Lorentz force, for this particular case, was generally

one to three orders of magnitude lower than the pressure and gravitational forces, thereby

indicating the fictitious monopole force to be insignificant.

RESULTS

For the three cases noted above, we will describe a number of features pertaining to the

unit IMF vectors. The IMF unit vectors indicate direction, but not magnitude, which changes

by orders of magnitude between the inner and outer boundary of the model. We also present

several contour plots of the physical parameters at a representative radius for the first case,

3-D plots of IMF lines for all three cases, and finally time series plots of magnetic field compo-

nents as they would be observed by a spacecraft located in the path of the plasmoid.

Unit IMF Vectors

Figure 2 shows the unit IMF vectors in the equatorial plane at four times (t = 24 h, 48 h,

72 h and 96 h) during the interplanetary evolution of the Case One plasmoid that was inserted

at the lower boundary (18 Re ) at the background solar wind velocity (250 km s- ). As the

plasmoid is convected outward, increasing B . due to the Archimedian spiral causes asymme-

try in the external and internal currents which combine to force the nose of the evolving, ellip-

soid-like volume eastward. (To an observer facing the Sun east is on the left.) While the nose
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moves eastward, the tail moves westward. Thus, distortion occurs but with no net deflection

of the plasmoid from the radial direction. The approximate boundary of the plasmoid is

sketched-in at t = 96h in Figure 2. This result is in agreement with the observationally based

suggestion that shockless (i.e., co-moving) plasmoids have no net average deflection (Gosling

et al., 1987b).

Case Two and Case Three are shown in Figure 3 and Figure 4, respectively, for approxi-

mately the same times as for the first case. Here, the plasmoid enters the lower boundary with

peak velocities of twice and three times, respectively, the background solar wind velocity. As

the plasmoid approaches the outer grid boundary at 225 Re its final velocity is about 420 km

s- 1 in Case Two, and about 490 km s-1 in Case Three. Hence, for these two cases, the plas-

moid is always moving at super-characteristic speeds. For comparison, the plasmoid's final

velocity in Case One was about the same as the ambient solar wind speed at 225 Re, 360 t,.',

s- 1 . We have sketched (in Figures 3 and 4) the approximate location of the plasmoid surface.

These figures also show the locations of the bow shocks. Shock locations were obtained from

contour plots of entropy rise, and overlaid using a light table. The thicknesses of these shocks

are a numerical artifact, as discussed earlier. Note the deflection across the shock of the vec-

torial directions from the original Archimedian spiral. These shock are quasi-parallel on the

east flank, and quasi-perpendicular on the west, thus little or no change in direction is evident

in those locations. Similar deflections occurred in Case One, however in that case, the deflec-

tion was caused by non-linear fast mode waves. The increased magnetic pressure and curva-

ture forces and the increased shock-induced thermal pressure on the leading (anti-sunward)

surface of the plasmoid, together flatten it from its original shape. Its relatively flatter shape,

compared with Case One, is evident.

It should be noted that, because of the coarse grid size in our numerical simulation, we do

not track the precise boundary of the plasmoid. This limitation of the simulation might be

improved with an extensive study of finer grid sizes, but that is beyond the scope of this study.
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Thus, our sketch of the plasmoid's boundary is only a reasonable approximation. In spacecraft

measurements, such boundaries are believed to be indicated by onset of bi-directional elec-

tron heat flux signatures, as well as the bi-directional energetic particle flux signatures men-

tioned earlier (Palmer et al., 1978; Gosling et al., 1987a; Marsden et al., 1987)

Contours of Physical Parameters at R = 129 Ro

Another way of examining the properties of the evolving plasmoid and its interplanetary

environs is to plot contours of the dependent variables on a spherical segment at various he-

liocentric radii. Figure 5(a,b) shows, for Case One, contours of constant plasma number den-

sity and temperature at t = 72 h on a spherical surface at R = 129 R.. (The mass density

labels are shown in units of 10-13 kg km - 3 ). Note that die "cross section" is nearly circular,

with number densities at 16 cm-3 in the center and 20 cm- 3 at the plasmoid's surface (where

the pressure is Ltinuous),,kAthough the plasmoid's motion for C¢A-e One is passive, acceler-

ating at the same rate as the solar wind, the inhomogeneity of the upstream, spiral IMF pro-

duces a larger, fast-mode compression on the westward (right) side of the plasmoid: up to 21

cm-3 as compar,-d with only 19 cm-3 on the eastward (left) side.

It is interesting to note that the major distortion of the plasmoid is always seen (Figure 2)

in the equatorial plane, where the effect of the spiral IMF is maximized. At the moderate

heliolatitudes (about ± 20*) the change in the spiral angle is small (Han et al., 1988), with a

negligible effect on the spheroid's distortion in the meridional plane.

Perspective views of IMF Lines

A 3-D view of a few IMF lines is shown in Figure 6(a-c) for Case One at t = 48 h, 72 h, and

96 h. These figures show a box which is 1 AU on each edge. Only 15, originally Archimedean,

field lines in the equatorial plane, separated in heliolongitude by A0 = 6*, are used in this

presentation. Their projections onto the lower plane of the box, parallel to the equatorial

plane, are shown as dotted lines. The plasmoid's field lines are not shown in this figure. The
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observer is located at 8 AU, 0 = 60* (the solar co-latitude), and 'P = 20* (where the X-axis

along the lower left side of the box points in the 'P = 00 direction).

Note that, in Figure 6(a), the fourth IMF line from the left is seen to go around the plas-

moid then loop back through the center of the plasmoid. This is the first indication that recon-

nection (caused by numerical diffusion) has occurred for those IMF lines that come into close

proximity to the neutral points at the nose and tail of the plasmoid. In this model reconnec-

tion results from the coarse grid and the highly diffusive Lax-Wendroff numerical scheme.

Although reconnection is exaggerated in these simulations, it does satisfy the rigorous defini-

tion adopted by Spicer (1990). It does show the type of global changes in magnetic topology

real reconnection would produce. The idea that the external ISMF and the internal plasmoid

field lines may reconnect was first proposed, to our knowledge, by McComas et al. (1988).

Although the magnetic configuration of the plasmoid is changed relatively little by this recon-

nection, the global view of external and internal field lines shows that the plasmoid's topology

is now that of a torus rather than that of a sphere. A number of IMF plots show lines looping

back through the "hole in the donut" one or more times. We estimate our grid magnetic Re-

ynolds number to be of the order of 300 near the neutral point at the nose of the plasmoid.

The viewing perspective for Case Two, illustrated in Figure 7, is the same as used in Figure

6. Figure 7(a-c) shows the IMF at t = 24 h, 48 h, and 72 h. The computed topology of one

field line belonging to the plasmoid itself is shown in Figure 7(c). This configuration supports

the speculation of Smerd and Dulk (1971) concerning the left- and right-hand polarization of

plasma spiraling around self-contained magnetic field lines based on their radioheliograph

observations of a plasmoid near the Sun.

In Case Three, increased pressure forces cause greater distortion of the shape of the plas-

moid. In Case One the shape is roughly spherical while ir, Case Three the shape is roughly

hemispherical with the flat side toward the sun. As expected for Case Three, the IMF draping

seen in Figure 8 is more pronounced than the other cases, and a stronger bow shock is pro-
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duced. We have shown, in this figure, a single set of co-rotating field lines at three different

times. One particular field line is emphasized at the three times shown in this figure in order

to demonstrate its ever-increasing amount of draping.

Time series of magnetic field components

Figure 9(a-c) shows the magnetic field signatures which a spacecraft sitting in the equato-

rial plane and in the path of the plasmoid near the axis of symmetrywould experience. In Case

One where no draping is expected, the magnitude of B ,first decreases as the plasmoid arrives.

In Cases Two and Three, the signature of draping is evident as an increase in the magnitude of

B,,(eastward deflection) as the plasmoid approaches. B(,deflects eastward due to the com-

pression of field lines stacked up on the front of the advancing plasmoid. In Case Two the

magnitude of B, is increased moderately, about 60%; in Case Three it is increased by 120%.

These results suggest a linear relation between the injection veloc,'ty and the amount of drap-

ing. Note, also, that a moderate rotation of the field occurs within the plasmoid, lasting for

many hours. In this respect our plasmoid resembles the magnetic cloud observations of Klein

and Burlaga (1982), however, the behavior of I B I in Figure 9, together with that of 13, lower

panel, indicate that the spheroidal plasmoid, as we have modeled it, is not a good candidate to

explain the magnetic cloud observations of Klein and Burlaga (1982). A prominent feature of

the spheroidal plasmoid is the region of reversed sign of the radial field component in the

central region. An adjunct of this is a surrounding shell of high 13 associated with the zero

crossing of the radial field component. However, the dynamics are non-trivial as indicated by

the region of very low 13 in the central region of the plasmoid in Case Three (lower right pan-

el). We have not searched spacecraft data for signatures resembling those of our plasmoid.

CONCLUDING REMARKS

We have combined our 3-D Interplanetary Global Model (3-D IGM) with a diamagnetic

plasmoid (in analogy to a spherical vortex) to demonstrate the dynamical evolution of a plas-

moid in an ideal conducting medium. The entrance of a plasmoid into the 3-D computational
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domain is effected by time-dependent conditions on the lower boundary (18 RO). We simu-

lated plasmoids to study their evolution and as a means to study IMF draping. Although the

microscale position of the IMF/plasmoid boundary was not demonstrated due to use of MHD

(fluid) approximations and coarse grid resolution, the large-scale topology of both sets of

field lines is reasonably well-approximated.

Several numerical experiments were performed. In Case One, the plasnioid was con-

vected with the ambient solar wind speed across the lower boundary with no deviation from

the background solar wind velocity (250 km s-') at that boundary. in Case Two (and Case

Three), the plasmoid entered with additional momentum such that the peak velocity was

twice (three times) that of the lower boundary's steady-state value.

In Case Tvc, the plasmoid also survives injection into the computational domain and, in

fact, generates a bow shock as would be expected in this "projectile" experiment. The plas-

moid becomes flattened; its radial extent is less than that in Case One, and its transverse ex-

tent is greater. As in Case One, reconnection changes the topology from a spheroid to a torus.

In addition, substantial draping of the IMF is apparent on the front, westward side of the plas-

moid, thereby supporting the suggestions of Gosling and McComas (1987) and McComas and

Gosling (1988). All of these characteristics are, as expected, enhanced for Case Three.

It ir impossible to present here all of the evidence available to the investigators. For exam-

ple, one of our most used graphical aids has been animated ID traces of various quantities

along a radial line near the plasmoid axis of symmetry. Another, which we have chosen not to

present, is color contour plots in equatorial and meridional planes. Yet another is "real" 3D

stereoscopic views of magnetic field lines such as those presented in Figures 6,7, and 8. These

were achieved by making 35mm "left" and "right" slide pairs where the "eye" positions dif-

fered by A4 = 30° These are viewed with a hand held viewer which holds two slides, one for

each eye. 199



Although not shown here, we noted that the force free condition, (V x B) x B = 0, was

never exactly satisfied but the maximum angular separation of J,i.e. (v x B), and Bwas usual-

ly less than 10". This lends support to the use of force free models such as by Suess (1988) and

Burlaga (1988) which have been relatively successful in predicting cbserved field orientations

in magnetic clouds (as reviewed by Gosling, 1990, and Burlaga, 1989). It also encourages us

to try to accommodate the more complex boundary conditions presented by the "rope-like"

low beta configurations.

The present study demonstrates a valuable, dynamically self-consistent, new MHD simu-

lation tool for studying the development of plasmoids as they propagate outward into the in-

terplanetary space. This 3-D tool clearly allows the study of IMF draping around such plas-

moids out of the ecliptic where it is difficult to sketch the spiraling of the IMF on conically-

shaped surfaces - even on an int'itive basis. This capability is particul:aiy inportant in light

of the upcoming (October 1990) launch of the out-of-ecliptic ULYSSES mission.
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FIGURE TITLES

Figure 1. (a ) Modified spherical vortex of radius a. Each contour, together with its mirror

image, shows the surface of a cylindrical stream tube. The stream function was

modified to make the flow uniform beyond the radius b = 2a. Note the region of

reversed flow in the central region of the vortex. In (b) the geometry and relative

size of the plasmoid is shown as it is introduced into the model grid by perturba-

tion of the lower computational boundary. The diameter of the plasmoid at R =

18 RG is r = 18 Re 18" = 3 .9 x 106 km.

Figure 2. Distortion (Case One) of the initially spherical plasmoid is indicated by unit IMF

vectors in the solar equatorial plane at four different times. In Case One, the plas-

moid is convected into the solar wind with the initial background solar wind veloc-

ity of 250 km s- 1 at 18 RE.

Figure 3. Distortion (Case Two) of the initially spherical plasmoid as indicated by unit IMF

vectors in the solar equatorial plane. The plasmoid is iniected into the solar wind

with peak velocities of twice the initial background solar wind velocity of 250 km

s at 18 R0 . The approximate trace of the plasmoid surface in the equatorial

plane is sketched-in. Shock position was transferred from a matching contour

plot of entropy increase.

Figure 4. Distortion (Case Three) of the initially spherical plasmoid as indicated by unit IMF

vectors in the solar equatorial plane. The plasmoid is injected into the solar wind

with three times the initial background solar wind velocity.

Figure 5. Density (a) and temperature (b) contours on a segment of a spherical shell through

the Case One plasmoid at R = 129 Rand t = 72 h. The viewing perspective is

toward the Sun; thus "west" is to the right, "east" to the left. The density labels are

given units of 10- 13 kg km-3 ; 320 x 10-13 kg kn- 3 is equivalent to a number den-
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sity of 19 cm -. Note the asymmetry in the compression and adiabatic heating on

the west compared with that on the eastward side of the plasmoid.

Figure 6. Initially equatorial IMF lines at t = 48 h, 72 h, and 96 h for Case One. The plasm-

oid's field lines are not shown in this figure. The viewing perspective is from 8 AU,

0 = 600, 4 = 20*.

Figure 7. Initially-equatorial IMF lines at t = 24 h, 48 h, and 72 h for Case Two. The viewing

perspective is from 8 AU, 0 = 600, = 20*. In (c) we have traced out one field

line of the plasmoid and indicated the location of the bow shock on the floor of the

1 AU cube.

Figure 8. Initially-equatorial IMF lines at t = 24 h, 48 h, and 68 h for Case Three. The plas-

moid's field lines are not shown in this figure. The viewing perspective is from 8

AU, 0 = 600, = 20".

Figure 9. Time series plots of magnetic field components (upper panels) as seen by a space

craft located at 0.72 AU and sitting 1.50 below and 1.50 to the west of the radial

extension of the plasmoid's initial axis of symmetry. The corresponding time se-

ries of plasma beta ( 13 = 2nkT/(B2/8ir) are shown in the lower panels for Cases

One, Two and Three. The shaded regions indicate the approximate plasmoid

boundaries.
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V. NUMERICAL MODELING OF GLOBAL INTERPLANITARY ENVIRONMENT

In this section, we reported the newest three-dimensional, time-dependent

magnetohydrodynamic model of extended corona. This model provided steady and

time-dependent solar wind solutions in three dimensions. Thus, it can be used

as a diagnostic tool for the calibration of instruments for observation using

the steady solution. The evolutionary solution can be utilized for the

examination of the disturbed solar wind due to solar disturbances. The

preliminary results deduced from this model will be published as an invited

paper in the J. Adv. Space Research. Another paper is also included in this

section which describes the interplanetary consequences due to solar

disturbances.

Numerical Simulation of Solar Distrubances and Their
Interplanetary Consequences in 1990 IAU Symposium on
:Basic Plasma Processes on the Sun" E. R. Priest and V.

Krishan (ads), 331-340.

Numerical Simulation of Extended Corona in J. Adv. Space
Res. (to appear) 1991,
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NUMERICAL SIMULATIONS OF SOLAR DISTURBANCES AND THEIR INTERPLANETARY
CONSEQUENCES

M. DRYER1, S. T. WU2 , and T. R. DETMAN1
ISpace Environment Laboratory
National Oceanic and Atmospheric Administration
R/E/SE, 325 Broadway
Boulder, Colorado 80303-3328
USA
2Center for Space Plasma and Aeronomic Research, and
Department of Mechanical Engineering
University of Alabama in Huntsville
Huntsville, Alabama 35899
USA

ABSTRACT. Responses of the solar atmosphere and interplanetary medium to
simulated solar disturbances were studied by time-dependent, MHD numerical
simulations. This deterministic initial-boundary value problem was at-
tacked in the classical way: a representative steady state is first estab-
lished, then input parameters at the lower near-Sun boundary are per-
turbed. We discuss a number of 2- and 3-dimensional examples of coronal
mass ejection (CME) simulations and some current controversies concerning
the basic process of CME initiation. Footpoint shearing motion is tested
to see whether it can provide a reasonable mechanism for CME development
from arch filament configurations.

We also demonstrate possible interplanetary consequences to CME-like
disturbances by using 3-D simulations to determine the dynamic response of
the solar wind to a plasmoid injection from an eruptive filament or promi-
nence. We also discuss the separate possibility whereby a plasmoid may be
generated in the interplanetary medium by a solar-generated shock that
propagates through a heliospheric current sheet. Application of the 3-D
model for the interpretation of interplanetary scintillation observations
is also discussed.

1. INTRODUCTION

1.1 Near-Sun Activity

The origin of coronal mass ejections (CMEs) is one of the major topics
currently under active debate. Observations by white-light coronagraphs
led to the first ideas and models for CMEs. Coronagraph images are pro-
duced by Thomson scattering of photospheric photons by coronal electrons.
In addition to the problem of CME origin, the problems of CME propagation
and evolution in interplanetary space are also important topics which pro-
vide the backdrop for this paper.

A variety of phenomenological descriptions have been applied to the
transient white-light images detected by coronagraphs, First OSO-7 and
then Skylab, P78-1, and SMM have contributed to the observations. As ob-
served in the solar-occulted plane of sky (Howard et al., 1985), these
traveling images have been called curved fronts, spikes, bubbles, loops,
blobs, etc. Some workers consiaered them to be more-or-less planar struc-

E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, 331-340.
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tures or helical, magnetically bound loops that escaped the Sun's gravita-
tional attraction; other workers considered them to be compressions (fol-
lowed by rarefactions) in the corona, produced by near-surface energy
conversion that expanded quasi-spherically. Their rate of occurrence and
solar-cycle dependence are in statistical dispute, with differences (one
per day vis-a-vis two per day) most likely caused by variations in
coronagraph design, resolution, and duty cycle. About half of the CMEs are
associated with filament eruptions (easily detected at the solar limbs);
some are associated with solar flares (not easily detected near the limbs
because of the awkward remote-sensing line of sight from Earth); some are
associated with both of the above; and sometimes there are no optical, ra-
dio, or x-ray observations temporally and spatially associated with CMEs
(Munro and Sime, 1985; Webb and Hundhausen, 1987).

Three theoretical descriptions (reviewed by Dryer, 1982) have been
offered: (a) White-light "loops" are magnetically driven by stresses in
the curved, moving plasma column; (b) White-light "loops," followed by de-
pleted brightness, are quasi-spherical shells of compressed coronal plasma
followed by rarefactions; these "loops" are produced by a localized, near-
surface change of properties in or near active regions; (o) Very-large-
scale coronal magnetic topologies become unstable and trigger CMES in some
way.

Klimchuk (1989) has discussed theoretical ideas for physical mecha-
nisms of CUE initiation. He first identifies three basic questions:

"1) What causes the disruption of the large-scale magnetic field/plasma
configuration?

2) How does the system evolve once the disruption begins?
3) How dcos the disruption trigger solar flaresit" -

Klimchuk addresses the first question within the framework of quasi-static

evolutionary modals. The second, he suggests, "will require a fully time-

dependent MHD treatment." As noted by Dryer and Wu (1985),this point has
been studied extensively. The third question is "likely [he noted further]
to involve non-MHD plasma processe3." Neither Klimchuk nor we discuss this
third question.In SECTION 2 below, we discuss a numerically demonstrated
MHD treatment that; in our opinion, is relevant to both the first and sec-

ond questions.

1.2 Interplanetary Activity

Several radio astronomers (Hewish and Duffett-Smith, 1987; and Hewish and
Bravo, 1986) have interpreted their observations of interplanetary scin-
tillation (IPS) to be associated with geomagnetic activity. Scintillations

of distant radio galaxies' radiation are caused by density fluctuations in
the intervening solar wind. These fluctuations can be used to generate

maps of enhanced and depleted solar wind density. These workers (see,
also, Tappin et al., 1988) introduced an ability to generate "interplane-
tary images" of compressed and rarified solar wind plasmas once each day.

A controversy stems from the radio interpretation of these maps when
the density-enhanced regions are back-projected to the Sun. The point of

ejection is (according to Hewish, 1988) within (or within a 450 circle
surrounding) a coronal hole. Hewish (1986) therefore inferred that an
erupting stream within a coronal hole emits very-high-momentum flux that
expands into a large (- 900) heliolongitudinal expanse and persists for
several days. This high efflux of energy, he claims, is the source of geo-
magnetic storms. He asserts that solar flares are peripheral events.

The alternative view, as expressed by most of the solar physics com-
munity, is that the energy influx to the interplanetary medium is due to
magnetic eruptions which produce a complicated interaction of shocks, com-
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pressions, and rarefactions. The net result [suggested by the 2-D and 3-D
numerical MD simulations by Dryer, Smith, and Wu (1988)] is the high dy-
namic pressure and IMF amplitude, negative Bz that are required for geo-
magnetic activity.

A number of transient interplanetary events (often preceded by
shocks) have been described by spacecraft investigators as "magnetic
clouds," or "plasmoids" (see the review by Burlaga, 1989). These magnetic
clouds are characterized by: (1) a rotation of the IMF polarity through a
large angle during a temporal interval of about a day, (2) an IMF magni-
tude which is higher than average, and (3) a solar wind temperature which
is lower than average. It is not known if the global topology is discon-
nected from the Sun (i.e., a plasmoid); if the IMP is still connected to
the Sun at both ends (i.e., extension of a solar loop arcade as suggested
by Gold, 1959); or if the propagating shocks introduce large-amplitude MHD
waves in their wake that cause the IMF to twist, then unwind, with one end
rooted in the Sun and the other in interstellar space (Dryer, Wu, and
Gislason, 1983). The plasmoid and extended loop are currently attracting
much attention together with the notion of twisted, nearly-force-free, IMF
"flux ropes."

Another interesting observational inference (based on in situ obser-
vations) is concerned with the IMF external to the magnetic cloud. Gosling
(1989) has reviewed work that suggests that IMF draping around the object
occurs in the sheath region between a bow shock and the presumed boundary
of the "CME." Although there is no objective criterion for identifying the
boundary of a "magnetic cloud" (Burlaga, 1989), this inference is reason-
able, particularly if the object (CME, magnetic cloud, etc.) moves rela-
tive to the background solar wind with a velocity greater than the local
magnetosonic speed.

2. RESULTS

2.1 Shear-Induced Instability

Figure 1 shows the schematic representation of a dipole magnetic
field in an initial state of equilibrium in a stratified atmosphere. A
2 t-D (i.e.. non-planar) MD model is used to simulate the response of the
exponentially stratified atmosphere to a photospheric shearing motion as
indicated by the sinusoidal velocity profile in Figure 1. It was found
that upward plasma flow velocities are gene-ated in the vertical direc-
tion. The velocities grow exponentially at first, with a growth rate equal

to V(V, a), where VA is the average Alfvdn speed and a' is the char-
acteristic length scale. The growth rate is saturated by the Lorentz
force, but growth continues until it reaches the same order of magnitude
as the Alfv6n speed. MHD instability, which we suggest may be called
"shearing-induced instability" (SII), occurs shortly thereafter. Physical-
ly, the simulation suggests that the central magnetic field lines are
pinched, and the outer loops stretch upward with a tendency to open. This
process may be considered as one of the fundamental mechanisms for CME
initiation (Wu, Song, Martens, and Dryer, 1990).

The SII was studied for three values of plasma beta, 8 = 15.4, 1.54,
and 0.06. The characteristic Alfv6n velocities for these three cases are,

respectively: 4.67, 46.7, and 232 km s-1. Figure 2 shows the maximum up-
ward velocity within the computational domain as a function of time. The
peak shearing velocity (Figure 1) was 5 km s-1 for the two high values of P
and 15 km s' for the (more realistic) lowest value. The growth rate for
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FigllzL.1. Schematic representation of an initial magnetic field (dipole)
arcade which is subsequently sheared at the phatosphere by the indicated
velocity profile. The computational domain is: x = ± 8.4 X 103 kin, and
y - 8 X 10O3 kmn.(Wu, Song, Martens, and Dryer, 1990.)

these upward velocities became unstable when the maximum deviation of the
field at the coronal base reached shear angles of 630, 480, and 210 forp
= 15.4, 1.54, and 0.06, respectively. Thus, instability is indicated for
moderate shearing angles when the plasma betas are low, as expected in the
lower corona.

It is important to note that the forcing function is a finite-
amplitude perturbation upon a stable configuration that eventually becomes
unstable. Reduction of the peak shearing velocity of 15 km s-1 to a more
gentle value, say 0.15 km s-1 , could be accomplished via the principle of
dynamic similitude (c.f., Wu et al., 1988). The computational run time
must then be longer. In the present case of 0 0.06 (the "prototype"),
the same realistic beta could be maintained for the ,model," together with
the same Struhal, Euler, and Froude numbers as well as the same ratio of
magnetic to kinetic energy for a dissipationless fluid.

As suggested above, however, there is a problem in this particular
case. The prototype ran for 7 Alfv~n periods, where the Alfv6n time was 35
seconds. Because of the desired hundred-fold decrease of shearing veloc-
ity, the model's rather excessive temporal requirement, T., would be:

2
TM - 7 X 35 X 10 = 24,500 s.

2.2 Solar-Injected Plasmoid into the Solar wind

Using the 3-D code of Han, Wu, and Dryer (1988), Detman et al. (1990) have

simulated the injection of an initially spherical plasmoid into the Solar
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Figure 2. Maximum upward velocity in the computational domain (Figure 1)
when photospheric shearing of a dipole magnetic field takes place. Note
that "shearing-induced instability" takes place at t P 200 s, for 0 -
0.06, after approximately seven Alfv6n times. (From Wu, Song, Martens,
and Dryer, 1990.)

wind. The plasmoid possessed both toroidal and poloidal magnetic field
components, like a set of concentric "slinky toys" placed end to end. The
plasmoid survived the injection and continued to propagate through the so-
lar wind, even producing a substantial shock wave when injected at a speed
greater (relative to the background solar wind velocity) than the magneto-
sonic speed. The approximate positions of the plasmoid and its shock wave,
and the draping of the IMF around the plasmoid, were determined. Figure 3
shows a 3-D view of some representative IMF lines and their draping around
the plasmoid. A representative magnetic field line within the plasmoid is
also shown.

It is interesting to note that some reconnection (due to numerical
diffusion) takes place between some of the plasmoid field lines and IMF
lines that come into close proximity to the neutral points on the front
and rear positions of the plasmoid.

2.3 Plasmoid Created at Helicopheric Current Sheet

In a separate numerical exper.iment, Dryer et al. (1989) showed how a ci-
gar.shaped plasmoid might be generated by a shock wave that propagates
through a flat heliospheric current sheet. The high total pressure, formed
by the 3-D shock wave just within its outermost envelope, decreases to low
values within the central portion, i.e., near the IMF reversal zone. The
high pressure gradient, generated by the outward-moving, large-scale
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Fiure 3. A 3-D view of the IMF as it is deflected by the bow shock, its
draping around the solar-generated plasmoid, and a single helical magnetic
field line within the plasmoid. Initially ega 1oial IMF lines are shown
at t - 24, 48, and 72 hours in panels (a), (b), and (c), respectively. The
viewing perspective is from 8 AU, 0 - 600, 0 - 200, where 0 is the helio-
colatitude and $ is the heliolongitudinal angle measured from the lower
left of the 1 AU-sized box. (Detman et al., 1990.)
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heliospheric shock wave, forces the opposite-directed IMF field lines to-
gether and causes them to reconnect.

Figure 4 shows the initial stage of reconnection at what will be the
leading edge of the cigar-shaped plasmoid. Reconnection also takes place
at the rear, pini.hing off the opposite-directed IMF as the entire struc-
ture propagates through the solar wind. The "cigar" would be oriented in a
direction transverse to the outward motion of the large-scale global dis-
turbance.

4. CONCLUDING REMARKS

We have briefly summarized some of our ongoing work in the field of non-
planar and 3-D numerical simulations of solar disturbances and their pos-
sible interplanetary consequences. The classical initial boundary-value
approach is scrupulously followed to ensure a deterministic response when-
ever a stable initial state is perturbed by a set of observationally in-

/s

Y(O tc 1 u .

Figure 4.. Initial stage of a cigar-shaped plasmoid that is formed in the
interplanetary medium by the propagation of a shock wave through a flat
heliospheric current sheet. (Dryer et al., 1989; S.M. Han, private comm.,
1989.)
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ferred parameter changes. Numerical experiments of this kind are a neces-
sary step beyond the "cartoon" stage, and must be undertaken with the
solution of the mathematical expressions for well-known physical laws to-
gether with reasonably chosen assumptions. The insight derived from simu-
lations such as the three described here are essential for understanding
large-scale global processes. Only investigation by multiple, in situ,
spacecraft missions can confirm or refute the global predictions of such
3-D numerical experiments. Such minsions have yet to be undertaken.
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DISCUSSION

FORBES: Was the initial state in your sheared arcade example potential or force-free? If
so, it seems to me that your result completely contradicts the work of J. J. Aly which shows
that such a disruption, which opens the field, by shearing should be impossible.

DRYER: The initial state is, indeed, a potential force-free magnetic arcade. When the
footpoints are moved, they are moved rather rapidly. For example, the lowest beta case (P
= 0.06) had a peak shearing velocity of 15 km/sec. Consequently, the system quickly
evolves into a non.force-free system with pressure gradients. Thus, the force-free results
of Aly do not apply. Also, the instability only results in a rapid expansion of loops and
locally fast mass flows after the mean Alfv6n speed is exceeded. This instability,
moreover, does not necessarily open the magnetic field. You will recall that there is no
resistivity in this model, nor are there any anti-directed fields where numerical reconnection
could, in principle, take place. Thus, this model does not address the question of field-line-
opening.

KUNDU: I am a little confused by your referring to flares as the cause of IPS-producing
shocks rather than high-speed streams from coronal holes, which Tony Hewish believes.
Since you showed Hewish's data, when you talked about IP shocks, I would like to know
what the present status is with regard to flares versus coronal holes as the cause of IP
shocks.

DRYER: Our use of Hewish's IPS data is decoupled from his interpretation that high
speed streams from corona, holes are responsible for geomagnetic storms. If a transiently-
developing coronal hole suddenly ksdy, on a few-hour time scale) develcips, a ahock could
certainly develop. I have a constructive and friendly disagreement with Tony who believes
that flares are peripheral events vis-d-vis geomagnetic storms. I believe otherwise. You
will recall that IPS data contains no information about the IMF (which, if southerly-directed,
is important for storm triggering); hence my comment above about decoupling. Of course,
even a steady-state hole could develop a shock that develops in the corotating frame. My
point is that any temporal and/or spatial solar inhomogeneity (c.f., flare, eruptive
prominence, or hole) could produce a shock. Hewish's point, however, about a transient
event, followed by a long-lasting energy output (be it a flare or whatever) is an important
point that is worth investigation. To this purpose, Zdenka Smith and I have recently
completed a 2D MHD parametric study that is relevant to this point. A final point is worth
making: there are no observables of erupting streams from coronal holes. Transient
coronal hole area changes are not sufficient, in my opinion, to claim that a shock will
propagate from such an event. The case for flares is well-established.

SWARUP: How does the intensity of shocks vary with solar distance in your models?

DRYER: When the temporal duration of an input pulse is short, say less than a few hours,
the strongest part of the shock will decay similarly to a classical blast wave with shock
speed -R- 1/2 where R is the heliocentric radius. If the energy input is long-lasting, say
some 5-15 hours (as suggested by long duration X-ray flares) the shock could move out at a
constant velocity (i.e., as a piston-driven shock) for some tenths of an AU before
decelerating as noted above in the frame of the background, moving solar wind.

PRIEST: (i) Is the plasma beta much smaller than unity in magnetic clouds and in your
magnetic bubble?
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(ii) If so, why should the plasma density changes he directly prcportional to the initial
density?

DRYER: (i) Your first question relates to our "magnetic bubble" numerical experiment.
We were interested in examining the dynamics of a particular configaation and the response
(cf., field draping) of the ambient solar wind and its interplanetary magnetic field to its
projectile-like motion. Although we were not interested at this exploratory stage to make
any comparisons with spacecraft-observed "magnetic clouds" the particular choice of the
parameters (n,TB,) within our input bubble produced plasma betas greater than unity. We
would expect that other, judiciously-chosen, parameter combinations could produce betas
less than one - as found in the observations. It is not clear, incidentAy that the latter are
bubbles - or whether they are gigantic loops with both ends rooted in the Sun.
(ii) The density fluctuations that give rise to IPS are experimentally er-mrelated with in situ
density measurements by Tappin (1986) and more rigorously, recently, by Zwicki et al
(AGU abstract,1988).

UBEROI: In your analogy of magnetic bubble to Hill's vortex did you take care of the fact
that some conservation theorems valid for vortices do not hold good for MD theory?

DRYER: Thank you for bringing this possibility to my attention. No, we did not take this
point into consideration.
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ABSTRACT

A three-dimensional, time-dependent magnetohydrodynamic (MHD) model is presented for the study of
coronal dynamics. The model, written in spherical coordinates, extends from the solar surface (IR,, where
IR, = 6.95 x 105 kin) to 15 R,. This model was developed with two major issues in mind. namely
for interpretation of various steady state and evolutionary dynamical structures in the corona. In order to
achieve tnese objectives we have employed two different numerical techniques to seek solutions for these two
different, but related, problems: steady state structures and evolutionary structures. These two numerical
techniques are: i) relaxation technique for steady state structures; and (ii) FICE (Full-Implicit-Continuous-
Euleian) technique for evolutionary structures.

ro sliustrate this model, we present numerical results for examples of both the steady state and evolutionary
structure of the corona. These results show the additional physical features which cannot be shown by a
two-dimensional model. Finally, on the basis of the exploratory calculation, we outline some interesting
physical features which can be considered for the observing prograns of future space missions such as
SOHO. OSL. CORONAS, etc.

I. INTRODUCTION

Since the Skylab-ATM experiments in the seventies, we have recognized that the corona is in a transient
state in contrast to the previous understanding whereby the corona is always in a quiet orderly state
(Billings. 19661. It is also further realized that the relationship between the flare and the coronal mass
ejection is not as consistently intimate as originally thought ( Hildner et al. 1976). In order to understand
the physics of this fascinating phenomena of so-called "coronal transients", a number of theoretical models
has been presented in the literature (Hundhausen et al. 1984). All of these theoretical models are based on
magnetohydrodynamic theory. The methodology used to treat these theoretical models could be classified
into two categories: ii) analytical methods and (ii) numerical methods. Those models treated by analytical
methods have to conform to certain strict conditions in which a full description of nonlinear dynamical
behavior is difficult to achieve: nevertheless, the solutions are exact. On the other hand. the models treated
by numerical methods could obtain global descriptions of nonlinear dynamics. but these descriptions are
not unambiguous and may mislead the physical interpretations. A further limitation to these two categories
is the fact that all of these models are confined to a two-dimensional geometry. Thus. it is inevitable that
some arguments in the interpretation of observations have taken place.

In this paper. we present a newly developed three-dtmensonal. time-dependent. magnetohydrodynamic
model for an extended corona. We will suggest that this model could be used to understand the physical
processes from tne comparison of this model's results with observational data. The thec:etical description
of the model oresents the basis for the addition of dissipative mathematical terms that could be used
to understand additional physical processes from specific observational data. The theoretical description
of the model are included in Section II. The numerical results are presented in Section III. Finally. the
concluding remarrs are included in Section IV

II. ANALYSES

Mathematical \odel

In this study, we have assumed that the solar atmosphere behaves as a single fluid with negligible dissipative
effects. With these assumptions, the time-dependent magnetohydrodynamc i MHDI equations that describe
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atmospheric'flows in three-dimensions for a spherical coordinate system can be written as follows:
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where the dependent variables are the density p, temperature T, velocity (v,, ve, vO), and magnetic field
(B,, Be. B , ). The independent variables are the radius r, the meridional angle 0 and azmithal angle o as
well at time "t". The constants are the polytropic index t, solar total mass M &d gravitational constant
G. In addition, the standard equation of state ip = pRT) was used to obtain the above set of governing
equations.

The region. within which we will present the numerical solution to the above set of governing equations. is
shown in Figure 1. This region is bounded by the solar surface and 15 solar radi (R,) in radial distance.
by the equator and the poie in mendional distance I -coordinate). and by azimuthal extent (o-coordinate)
of 45°•

Method of Solution

The equations are solved numerically using a modified FICE (Full-lmplicit.Continuous.Euleriani scheme
which is based on the original FICE scheme developed by Hu and Wu (1984): and Wu and Wang (19871.
The grid spacings used are 6r, = R,l 1 - )'-'. and 60 = bo = 4.5'. It should be noted that the radial
spacing is not uniform and is chosen so as to: (II assure the initial state as being in isothermal and
hydrostatic equilibrium iWang et al. 1982): (21 initialization of the computation procedure: and (3) to
ensure numencai accuracy. The time step can be arbitrarily chosen because of the flexibility of the FICE
scheme.
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Fig. 1. A schematic description of the portion of a three- dimensional configuration in which the solution
is calculated. Note that the computational domain extends from the pole to the equator within a
450 extent of heliolongitude. In the present paper. symmetry is assumed below the solar equatorial

plane

Initial State and Boundary Conditions

In order to seek a solution of this problem. we need to specify the initial conditions. These initial conditions
include the magnetic field configu:ation, velocity field and corresponding thermodynamic properties of the
plasma.

The boundary conditions are rather complicated, hence a detailed account of the derivation of the boundary
conditions will be presented later IWang and Wu. 1990). We shall only briefly describe these boundary
conditions here. There are a total of six sides in which the boundary conditions need to be specified: they
are:
(1) r = R,, eight compatibility conditions are obtained from the set of governing equations I Wu and

Wang, 19871;
(2) r = 15R , non-reflecting boundary conditions are used (Hu and Wu, 1984);
(3) 0 = 0 (pole) and 0 = 900 (equator). symmetric conditions are chosen because of the chosen field

configuration:
(4) ' = 0 and o = 450, the boundary conditions are obtained by extrapolation techniques.

III. NUMERICAL RESULTS

In order to carry out this simulation. we first introduced an initial state at isothermal and hydrostatic
eqrulibrium with -Y = 1.67 together with a potential field in one case and. in a separate case. a linear force-
free magnetic field topology. These two separate cases were introduced into the set of governing equations
in order to ensure that the isothermal and hydrostatic equilibrium does exist. We then introduced a
steady-state. Parker-type. velocity field. The numerical solution of this mathematical system led to a
magnetohydrodynamnc equilibrium state via the relaxation technique. This MHD equilibnum state is
then taken as the simulated undisturbed coronal li.e., quiet corona) with an outflowing solar wind around
multiple helmet magnetic topologies.

The initial plasma and fields (magnetic and velocity) parameters incorporated in this simulation are the
following representative conditions of a non-rotating sun with an initial plasma do(= 161rn,,k*To,'B,) being
unity. at r = R,, 9 = 90' and o = 22.5'.
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* Isothermal and hydrostatic equilibrium atmosphere.
To = 106 K
Po =P exp((. - RTo)

where p0 is the density (the value of 1.67 x 10 -l6 gm cm - ' is used in this study and go is the gravity on
the solar surface.

* Magnetic field configuration
(i) A hexapole potential field (Jackson. 1962); and, in a separate calculation.

(ii) A hexapole linear force-free field (Nakagawa et al., 1978)

e Velocity Field
V'(1, 0, 0) = 15 kms - ',
v,.(15, 0, ) = 200 kms-1,
ve(r, 9. 6) = vo(r, 0, 0) = 0.

Figure 2 shows the simulated morphology of the quiet corona which consists of a three-dimensional repre-
sentation of the brightness ( integrated density along the path of the line-of-sight), steady state solar wind
velocity vectors rnd magnetic field for two caes: (a) initially potential field topology; and (b) initially linear
force-free field topology, respectively. It is easy to recognize that the shape of the quiet corona depends on
the initial magnetic field topology. The bright corona is related to the closed magnetic field configuration.
and the dark region corresponds to the open field configuration which corresponds to the out- flowing solar
wind from the coronal hole. Also it shows that the solar wind velocity is almost radial.

Fit. 2. The three-dimensional simulated brightness, steady state solar wind velocity vectors and magnetic
field of the confined plasma corona for: (a) initially potential field configuration (upper left panel)
a,,d (b) initially linear force-free field configuration (upper right panel).

In order to examine the physical structure of tu. quiet. steady-state, corona, we plot the radizl distribution
of the density and temperature at the pole and equator for the initially potential and linear force- free
magnetic field topologies. respectively. as shown in Figure 3. The radial distribution of the three velocity
components ii.e.. v.. vy. vu) at the pole and equator is shown in Figure 4 for both types of magnetic field
topology. Finally. we plot the radial distribution of Alfven and sonic speed . t the pole and equator in
Figure 5.
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Fig. 3. Radia distribution of the density (p/p.)and temperature (TIT.) at the pole and the equator,

respectively for; (a) initially potential fleid configuration and (b) initially linear force-free field
configuration with p. and T,, given in page 6 of the text.
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potential field configuration and (b) intially linear force-free field configuration.

Comparison of each of these parameters demonstrates the well-known inference and important fact that

the magnetic field is the dominant factor that determines both the morphology and physical structure of

the corona. The spatial diversity of these important. fundamental steady-state parameters is obvious.

For the completeness of this presentation, we shall show some results for a disturbed corona in Figure 6.

This numerical result is obtained by introducing a pressure pulse (p/po = 10) distributed over three grid

points centered at 6 = 35 . b = 22.5 ° and r = R, for the case of the initially linear force-free magnetic field

topology of the quet corona as shown in Figure 2b. In Figure 6. at t = 600 s, we show simulated brightness
(i.e. line-of-sight integrated density enhancement), disturbed magnetic field and solar wind velocity vectors

in the w = 22 plane. According to the results shown. we may interpret that the brightness was caused by

the flow interaction with the magnetic field. This density enhancement consists of both the mass carried
by plasma flow motion and local wave compression.

IV. CONCLUDING REMARKS

In this study, we have presented a newly-developed, three-dimensional, time-dependent magnetohydrody-

nainc model for :he study of corona structures in both quiet and disturbed states. This model extends

from the solar surface to 15 R, and. thereby, includes the region of outflowing solar wind from the subsonic.

sub-Afveruc to super-sonic and super-Alfvemc regions. Therefore. we assert that it is. indeed, a model

which could be used to study coronal/interplanetary coupling problems.

In these prelinunary results, we clearly recognize that the magnetic field topology and strength controls

both the structures and physical parameters' morphology of the corona. Also, this model has the capability

to convert the fundamental physical parameters i i.e. p, T. v) to observables such as brightness isee Fig. 2)

and doppler shifts I not shown i. Therefore. we may claim that this model has the potential whereby it could

be used as a diagnostic tool that can be applied to the interpretation and guidance of the observations. For

example. we may use the physical properties obtained from this model to compute fine profiles. As a final
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Fig. 6. The three-dimensional simulated brightness, magnetic field and solar wind velocity of a disturbed
corona at 600 s after introduction of a pressure pulse (simulated flare) at solar surface of the
quiet corona given in Figure 2b, (a) Viewed from 0 = 50*,4 = -20*, and (b). viewed from
9 = 50*, 0 = l0 ° .

remark, we recognize that the development of this model is far from complete. The improvements can be
tackled in two major catagories as follows:

o Mathematical Improvement

We should establish the accuracy of the numerical results. In order to achieve this purpose. we
should conduct a grid size test for this model.

o Physical Improvement

Presently, the model includes dissipative mechanisms that were not invoked for the present demon-
stration of its three-dimensional, temporal capability. Namely. the present model results are based
on "ideal" MHD theory. We realize that dissipative MHD is important to many solar physics
problems in which finite electrical conductivity, thermal conductivity, radiation and turbulence
are undoubtedly present. We plan to incorporate these effects in our model via a conservative and
rational step-by.step approach. However. the current ideal MHD model, because of its inherent
and natural three-dimensional resemblance to the real world, is essential for the construction of
solutions which resemble observed realistic topologies. We have obtained in the present demon-
stration. for exampie. induced menionai and aximutha flows which existina two-dimensional
models cannot provide.
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VI. FUNDAMENTAL METHODS FOR THE MODELING OF SOLAR INTERPLANETARY
ENVIRONMENT

In order to obtain numerical solutions for these highly complex non-

linear mathematical models, for the physical system encountered, innovative

numerical techniques are called for. We have successfully developed a new

numerical method to deal with mathematically illed-posed problems of

extrapolation of magnetic field configurations using observations. This

method is called Progress Extension Method (PEM; Wu, et al. 1990, Astrophys,

J) and is included in this section. A total of four papers concerning

numerical methods were published ind are included in this section.

Magnetohydrodynamic (MHD) Modeling of Solar Active
Phenomena via Numerical Methods, in Developments in
Theoretical and Applied Mechanics, S. Y. Wang, R., M.
Hackett, S. L. Deleuw and S. Am. Smith (eds), 62-70, 1988.

Application of Simulitude Principle to the Numerical
Simulation of Solar Atmospheric Dynamics in J. Adv. Space
Res.,. Vol, 8, Number 11, 221-226, 1988,

On the Numerical Computation of Non-linear Force-free
Magnetic Fields, in Astrophys. J., Vol. 362, 698-708,
1990.

A Comparison Between Progressive Extension Method (PEM)
and Iterative Method (IM) for Magnetic Feild
Extrapolations in the Solar Atmosphere in J. of the
Italian Astronomical Soc., Vol. 61, No. 2, 477-484, 1990.
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ABSTRACT

Numerical simulation has become a tool for the investigation of detailed physical
structures of solar atmospheric dynamics. This tool has become an essential part of
solar physics because the complexity of nonlinear characteristics of much solar
phenomena renders the achievement of analytical solutions to be difficult to obtain.
Although computer technology and numerical methods have made significant progress in
recent years, realistic simulation for some prototype physical systems (for example:
the birth and decay of an active region) still is not possible because of the wide
range of spatial and time scales that must be considered. Therefore, proper scaling
rlil s must be recognized for the aeio*pment of appropriate models. In this paper,
we shall apply the similitude principle to develop these scaling rules for problems
of solar atmospheric dynamics. It is found that these rules are highly dependent on
the physical nature of the specific problem under consideration. A set of
"similitude critiques" is presented for some specific physical conditions.
Numerical examples of coronal dynamic response and active region dynamics are used to
demonstrate these new ideas.

INTRODUCTION

Dimensional analysis and similitude principles (Kalikhman, /2/) have been widely
used in experimental physics and hydrodynamics, because these fundamental theories
enable us to study and gain the insight of physical relationships between laboratory
models and their full scale prototypes. Recently, highly sophisticated computing
capability has enabled theoreticians to study very complex nonlinear physical
systems which are beyond the reach of analytical methods. This approach has grown
quickly and has become a sub-discipline called "numerical simulation". In fact,
numerical simulation is, in reality, the theoretician's experiments.
Experimentalists build physical models in the laboratory with hardware. On the
other hand, theoreticians build models with computer codes. Despite the
availability of state-of-the-art supercomputers and advanced numerical methods, the
construction of numerical simulation models for realistic prototype experiments
still has encountered the following difficulties:

(i) limitations on memory capacity and computation speed for desired
resolution and accuracy of the physical system under investigation.

(ii) even without limitations on memory capacity and computation speeds, the
large number of significant computation operations will introduce
inherited truncation errors that will effect the accuracy of the
computation and, consequently, will prevent the realistic simulation of
the prototype.

It can be noted that these two conditions contradict each other. Therefore, it is
almost impossible to obtain ideally perfect simulation models. One may remedy this
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issue, firstly, by constructing a sfmulation model on the basis of the best
resolution and accuracy with optimum spatial grids and time steps (which may not be
exactly identical to the prototype) and then, secondly, using classical similitude
principles to scale the prototype with the simulation model and its physical
characteristics.

It has been established for a long time that the characteristics of the full-scale
prototype could be predicted by a small-scale model provided certain similitude
rules are followed. For example, the airplane designer tests scaled models in the
wind tunnel to determine the aerodynamic behaviour of the airplane that is expected
in actual atmospheric flight. Similarly, the naval architect tests new hull designs
in a towing basin by using a model with the same philosophy vis-avis ocean-
traversing ships.

According to the similitude principle, in order to enable a model to simulate the
physical conditions of the prototype, the model system has to be geometrically,
kinematically, and dynamically similar to the prototype system. The derivations of
these physical characteristics will be presented in Section II. Numerical results
for solar coronal dynamics to substantiate these claims are included in Section III.
The final conclusions on the application of similitude principle to solar
atmospheric dynamics will be discussed in Section IV.

SIMILITUDE PARAMETERS

Let us consider an inviscid, compressible magnetohydrodynamic (MHD) flow of finite
electrical conductivity and thermal conductivity in a gravitational field. The
mathematical representation of this physical system results in a set of standard MHD
equations. The first step is to make this set of governing equations dimensionless
in order to obtain the similitude parameters. Through these dimensionless
procedures, we found the following similitude parameters:

L p B2

St a - EU - Sm
UTD DU2

U2  UL Cv B
Fr - , Rm F - , S v = (1)

GL A U2

c9 e K 0
sp P u2 I sk  3 ,s d

LDU2  DR B

where the symbols T, L, U, D, p, 0, B, G, A and K are the characteristic quantities for
the time, length, velocity, density, pressure, temperature, magnetic field,
gravitational field, electrical and thermal conductivity, respectively. Their
values are given by the boundary values or other constant values reflected in the
physical and mathematical nature of the problem to be investigated. The physical
significance of each of these dimensionless parameters given by Eq. (1) is very
clear. The reader will recognize that St, Eu, Fr and Rm are the Strouhal number,
Euler number, Froude number and magnetic Reynolds numbers, respectively, that are
described in many standard hydrodynamic and magnetohydrodynamics textbooks. The
other dimensionless parameters Sm, SV, S. and Sk represent the relative importance of
characteristic magnetic energy, characteristic internal energy, characteristic
enthalpy, and characteristic thermal flux relative to the kinetic energy,
respectively.

Based on the similitude principle (Kalikhman, /2/), the condition of similitude
characteristics must satisfy the geometric and physical similitudes. In other
words, the characteristic dimensionless parameters for the model and the prototype
must have the same valaes, respectively. According to the equality of these
similitude parameters, as described in Eq. (1), the scaling laws can be derived
between the model and prototype.

NUMERICAL TESTS OF SIMILITUDE PRINCIPLES FOR SOLAR ATMOSPHERIC DYNAMICS

In order to illustrate the potential applicability of this method to solar
atmospheric dynamic research, two examples are chosen for illustration. These are
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the coronal mass ejection and mass ejedtion in an active region as discussed below.

Coronal Ms Election

In this demonstration, we employed a two-dimensional, time-dependent ideal
magnetohydrodynamic model /1,3/. In this ideal MHD model (i.e., infinite electric
conductivity and no thermal conduction and radiation effects) there are four
independent similitude "characteristic critiques", namely, St, Eu, S., and Fr
according to Eq. (1).

Based on similitude principle, it is necessary to keep these four independent
similitude characteristic critiques identical for both model and prototype in order
to have the appropriate physical similarity. Hence these are:

Lp Lm
St -- -- -,TpUp T3Um

Eu Pp Pm

D iU
2  DmU 

P m

2 2 (2)
B Be

mSm = =

D Pu2  Dm u2

P m

2 2U p Um

Fr = - -
GpLp GML M

where the subscripts "p" and "Im" represent the quantitites associated with the
prototype and model, respectively. As usual, it has been learned thac rne parameter
"plasma beta (B)" is the important parameter in the MHD numerical simulation, which
can be deduced by taking the ratio of Eu and Sm, such that

8 7E u  8 ,xp , 8 7p p..E 8t. . ..rP Bp B3, (3)

B2  B2
m 

p

This implies that the characteristic 3 value for the prototype and model are
identical as expected.

Recently, Wang et al. /3/ and Wu et al. /5/ have numerically simulated the
characteristics of mass motion and wave propagation in the solar corona caused by a
radial mass ejection in neighborhood of the equator at the solar surface by using the
Full-Implicit Continuous Eulerian (FICE) scheme in spherical coordinates. For the
prototype, we use the following values to calculate the initial state: the coronal
temperature is taken to be 10 K, the plasma density at the equator on the solar
surface 1. 67 x 10- 16 g . cm" 3, and B is equal to 10 at this position. The computation
domain is taken to be ir < r < 4r and 0 5 e 5 900, r is the radius of the sun (6.95 x
105 kin). After obtainig the ihitial state, we iPtroduce a radial mass ejection
upward in the latitudinal range, 83.250 5 8 5 900, on the solar surface. The ejection
veloci:y is distributed linearly with e, and the maximum velocity is taken at 0 - 900.
Temporally, the velocity increases with time until t 1 1000 s when it reaches a
prescribed maximum 100 km s- at 90' and remains constant at that value until the end
of the computation. The total time-scale of computation is about 6000 s. So, we may
take the characteristic quantities of various physical parameters for the prototype
as the following:

T = 6000 sec, Lp = 3to,

Up- 100 km . s-1, Dp - 1.67 x 10- 16 g/cm 3 ,

- 106 k, pp = 2.76 x 10- 2 dyne cm "2,

GP= 0.271 km s - 2, Bp = 0.26 Gauss.
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We have used the full implicit continuohs eulerian scheme in spherical coordinates,
as noted above, and the usual symmetrical boundary conditions at the pole and the
equator, as well as the physical boundary conditions at the bottom and the
computation boundary conditions at the top in the computation domain /1,3,4/.
According to Eq. (2), we are allowed to choose the characteristic quantitites of
various physical parameters for the model. For example we take

LM = Lp, Dm = DP, Um = 2Up. (5)

Then, by using Eq. (4), we obtain the other characteristic quantities for the model

1
Tm  -Tp, Pm = 4pp, Om = 4 Op , (6)

2

Gm = 4Gp, B, = 2Bp, am Bp. (7)

It should be noted that this kind of physical phenomena contains the appropriate mass
motion and wave propagation. The characteristic velocity in Eq. (5) is the velocity
of mass motion in order to simulate simultaneously the characteristics of mass motion
and wave propagation in the model. Then, a characteristic quantity that describes
the wave propagation, namely the Alfven velocity, VA, must be considered.
From Eq. (4) - (7), we obtain

(VA)= 2(VA)p (8)

For comparison, we present the computed results of relative density at t = 6000 s for
the prototype and at t = 3000 s for the =odel in Table 1.

TABLE 1 The Values of Relative Density* at 0 = 87.50 (1.066 5 R .

it = 6000 s for prototype, t = 3000 s for model, Sp = BM = 10)

R(-r/r) I 1.066 1.137 1.212 1.293 1.378 1.470 1.567

Prototype 1.123 1.198 0.848 0.415 0.257 0.179 0.107
Model I 1.109 1.249 0.869 0.436 0.272 0.191 0.117

R I 1.671 1.782 1.900 2.025 2.160 2.300 2.455

Prototype I 0.019 -0.073 -0.087 -0.023 0.050 0.125 0.200

Model I 0.035 -0.043 -0.042 0.014 0.078 0.143 0.210

R I 2.618 2.791 2.976 3.174 3.384 3.608 3.847

Prototype I 0.277 0.352 0.422 0.352 0.169 0.025 0.000
Model I 0.278 0.343 0.396 0.318 0.151 0.023 0.000

*Relative density = (D - D0)/D0

From Table 1, it can be shown that the radial profiles of relative density for the
model are in good agreement with the radial profiles of relative density for the
prototype at t = 6000 s. Note that a leading compression, followed by a raref action,
occurs in both cases. At other time steps the numerical results show the same
agreement. This result proves that the model reflects the actual physical
characteristics of the prototype in this example.

Mass Election in an Active Region

We consider another example of mass ejection in a small-scale region. Wu et al. /4/
have investigated the problem of mass ejection from the photosphere (a "surge"
perturbation as contrasted to the above-discussed thermal pressure-pulse "flare"
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perturbations) and calculated the response of the surrounding solar atmosphere.
For the initial state of the prototype, the distributions of the magnetic field and
plasma density are:

B x - B0 Cos ( aoct I

By- B0 sin ( a -y, (9)

- - dy
10 RT

p " pCe

where a - w/L, and BX and By are the horizontal and vertical components of magnetic
field, respectively. L, P0, B0 are the characteristic quantities of the length
(spatial scale), reference plasma density and magnetic field, respectively. We
introduce a vertical mass ejection upward at t - 0 in the range, 5200 km _ x s 8000 km on
the y - 0 plane, with the ejection velocity distributed linearly with x and the
maximum taken at x - 8000 km. At the same time, the velocity increases with time
until t - 15 s when it reaches its maximum, 15 km s , at x - 8000 km. The total time-
scale of computation is about 700 s. We used the FICE scheme in the Cartesian
coordinate system together with projected normal characteristics /I/. Then, the
characteristic quantities of various physical parameters for the prototype can be
taken as follows:

TP - 700 sec, LP - 1.6 x 104 km,

Up - 15 km s1, DP - 43.175 X 10 13 gCM- 3

sp, 5 X 104 K, pp - 3.45 dyne cm2

GP - 0.271 km s-., BP - 5.59 Gauss

It may be shown that 3= B - 1. In this example, we use a new
P B2

choice for the characteristic quantitites of the model. If we take

Lm =-- , Din m DP, Um M UP (11)2

then, according to Eq. (2), we can obtain other characteristic quantities for the
model as follows:

m = - , P. - pp, O = p12 (12)

Gm = 2GP B= BP, am  BP,

From Eqs. (10) and (11), it can be shown

(OM = (VO)P (13)

in this case. For comparison, corresponding data at t = 700 s and and x = 7200 km for
the prototype, and at t = 350 s and x = 3600 km for the model, are given in Table 2.
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TABLE 2 The Values of Relative Density* (800 5 y S 8000 km)
(Bm = = 1)

y(km) 800 1600 2400 3200 4000 4800 5600
Prototype ap/p0  0.103 0.267 0.059 0.045 0.100 0.129 0.124

t = 700 s I y(km) 6400 7200 8000 8800 9600 10400 11200
x = 7200kmi -%p/p, 0.114 0.104 0.044 0.083 0.029 0.060 0.028

y(km) 12000 12800 13600 14400 15200 16000
ap/p, 0.036 0.026 0.018 0.014 0.024 0.049

Model y(km) 800 1600 2400 3200 4000 4800 5600
td350 s yp/p 0.104 0.282 0.054 0.052 0.097 0.124 0.116

x = 3600km y(km) 6400 7200 8000
ap/po 0.116 0.096 0.049

*Here, 1p/p0 = (D-D0)/D0 "

From these results, we again noticed that the agreement between the prototype and
model is good but is not as satisfactory as the coronal mass ejection case. This is
probably because we have scaled both time and space which may cause additional
numerical errors. However, the qualitative behavior of physics is still
acceptable.

CONCLUDING REMARKS

In this study, we may conclude the following:

(i) Using proper similitude characteristic critiques, one set of model
calculations can be used to simulate a number of prototype calculaticns.
This implies that, when tne physical size of the prototype becomes too
large to handle, a small size of the model could be used to replace it. In
such a way, the computing time can be improved because of the fewer
required numerical operations which will also decrease the truncation
error.

(ii) The similitude principle may be considered to be a universal solution for
certain types of physical problems such as those in solar atmospheric
dynamics.
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ABSTRACT

An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere,
given the proper boundary conditions. In this paper we present the results of this work, describing the mathe-
matical formalism that was developed, the numerical techniques employed, and comments on the stability cri-
teria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test;
the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on
the order of a few percent (<5%). Then we applied this newly developed scheme to analyze a solar vector
magnetogram, and the results were compared with the results deduced from the classical potential field
method. The comparison shows that additional physical features of the vector magnetogram were revealed in
the nonlinear force-free case.
Subject headings: hydromagnetics - Sun: chromosphere - Sun: corona - Sun: magnetic fields

1. INTRODUCTION of the active region. Previously, Levine (1976) has shown that
Observations have shown that physical conditions in the changes in the value and sign of a can occur within a single

solar atmosphcre are strongly controlled by solar magnetic active region. Recently, Gary et a! (1987) have used observa-
fields. The appearance of photospheric, chromospheric, and tions of an active region (NOAA AR 2684 on 1980 September
cbronal structures, including active regions arid flares, seen in 23) to show nonlinear aspects of the magnetic f, id.I he specific
Hoe and in different lines in the ultraviolet and extreme ultra- investigation of the spatial distributions in the photosphere of
violet as well as in white-light observations, provides indica- the vertical component of the electric currents has proved the
tions of the prevalent nature and importance of solar magnetic nonlinear nature of the force-free fields (Hagyard, West, and
fields. Consequently, to understand the physics of active Smith 1985; Moreton and Severny 1968).
regions, the storage and release of flare energy, and the forma- The inadequacy of linear force-free models to represent
tion of hot plasma loops and mass ejections, it is imperative observed solar magnetic fields is demonstrated amply by these
that we understand and study the evolution of t,.c Sun's mag- studies. A compromise approach-constructing a "patchwork
r'-tic field. To achieve such a goal, the logical first step is to quilt" representation of the field of an active region by combin-
I 'k a realistic representation of the configuration of the solar ing fields derived from solutions of the linear equations of
magnetic field from observations, different values of a-has no mathematical basis, as shown by

A number of efforts in modeling physical structures of the Gary (1989). Such an appro-ch is certainly inappropriate in
magnetic fields and the storage and release of energy in flares describing the evolution of magnetic fields when important
are based on linear, so-called constant-, force-free models of nonlinear physical processes such as energy storage and release
magnetic fields (e.g., Nakabawa et at. 1971; Nakagawa and and magnetohydrodynamic (MHD) instabilities are involved.
Raadu 1972; Welleck and Nakagawa 1973). For example, In this paper a numerical scheme is presented for extrapo-
Tanaka and Nakagawa (1973) used this linear force-free model lating nonlinear force-free magnetic fields from a source
to analyze the energy buildup for the 1972 August flare. More surface, i.e., from observed vector magnetic fields at the photo-
recently, Schmahl et at. (1982) used a linear force-free model spheric level. This kind of approach was discussed in previous
together with solar magnetograph data, VLA microwave works (Harvey 1967; Molodenski 1969; Nakagawa 1974), but
maps, and X-ray spectroheliograms to study the evolution of none of then is specifically for nonlinear force-free fields. It is
an active region's magnetic structure, a study that led to a understood here that we deal with a Cauchy problem for a
better understanding of the observed microwave structures, system of elliptical partial differential equations, in which both
The authors concluded that localized currents must have been field values and their derivatives are specified at the plane
present in the low corona to account for the bright 6 cm z = 0. Mathematically, this is an ill-posed problem with an
sources observed far from area., of strong sunspot fields, thus unstable solution isee. e.g.. Morse and Feshbach 1953, p. 703).
suggesting the presence of nonlinear (non--constant-a) force- However, ill-posed problems are encountered in many impor-
free fields. Further evidence for the existence of nonlinear tant practical physical and technical situations (Courant and
force-free fields comes from the study of Krall et at. (1982), they Hilbert 1962) and are being solved by the so-called regulariza-
used a linear model to investigate the vector magnetic field tion method (Tikhonov and Arsenin 1977). In the present stud,
evolution within a flare-productive active region and con- we have developed an averaging procedure which represents a
cluded that the constant-a force-free model could not ade- relatively simple smoothing of the derivatives; it enables us tu
quately represent the structures observed in the magnetic field obtain an approximate solution with reasonable accuracy. The
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combining equations (2.6H-2.9) with the finite-difference for-
mulae shown in the Appendix:

i' h:

(Bj... =(/B) *...+ - [(B:)- I.... - (B:),- ... j
2h,

+-- - -- - -I'B ) -- -- -- -- +l (3.1)

(B)tmn..i = (B )I.m. + Ii [(BJ,. - BimI,: ~~2 h ,. . ..

COSEnVED oxjmnh
DATA - ( Bxi... : , (3 2)

,,- " (B :)im n .. . = (B t.. .. - "-(2t I ( B , z t . . - (B r ) . .. ] n

z 2Ji/ h-2h,

FIG. I -Coordinate system and computational domain - [(Bh,:,,,. I - (B,)I.m -. ,] (3.3)-2h, ' " '

The numerical algorithm presented in this paper is a I F(B, n+I- (B.), - I ,-
straightforward extrapolation procedure with specified bound- (Ai....-
ary conditions (where data can be used). The computational (B)i....L 211
procedures. differencing schemes, and criteria for numerical (B) . -(BA),. 7
itabilitv are discussed in the following subsections. -2.34)

a) Computational Procedures where
We take as boundaries the six planes of the computational =

domain as shown in Figure 1. The values of the field on the (4) ... - B.
lower surface are assumed known at discrete points. e.g., from + (Bi),. n + (B,)., I,.] . (3.5)
measurements of the vector magnetic field at the photospheric
level. The computational procedure to be used is summarized In cases where B: becomes so small that the computed value of
as follows. 2 becomes inaccurate, we simply replace oc by i. defined as

I. At the lower surface (: = 0), the vector field (Bx, B,, B:) is ().... = [( ), +,.M.. + (001- I... + (z)0,,, ,., + (O).M- .j]
prescribed at each grid point.

2. At this surface (i.e., z = 0), the horizontal derivatives (3.6)
iB !i x. ?Bj). BJ . i B,!ay, tB:/0x. eB:/ay are computed. These averaging formulae ()i.m... and (B,)I.. are used instead

3. Using equation 12.9), the value of 7 over the plane is of the values of ()1.... and (B,),,,,., at the grid points as a
computed. method for smoothing the data. The selection of the grid

4. Using the results from steps 2 and 3. the vertical deny- spaces is guided according to the numerical stability criteria
atives are computed from equations (2.6).(2.7). and (2.8). which are discussed in the next section.

5. With the vertical derivative of B(x. v, 0) thus determined.
the field B(. v. d- is computed using an expicit extrapolation c) Computational Domain and Numerical Stablitv
scheme.

6. Repeating steps 2-5. the complete field configuration can In general, six planes form the surface (or limits) of the com-
be determined subject to the boundary conditions, specified on putational domain. The values on the lower surface are deter-
the other five surfaces, mined from observational data: thus this surface is referred to

as the "source surface." i.e.. the photosphere. Values on the
h) The .Numerical Diterential Scheme other surfaces are prescribed according to both physical and

In order to compute these horizontal derivatives numeri- mathematical continuity conditions.
Lally. we used hecond-order central differences for the interior In the paper we employ the following conditions for the
points (Burden 1981l. the specific expressions are given in the numerical stability analysis: assuming that (1) as z - ;r.
Appendix. For the computation of derivatives for points on the (B,. B,. B;) - ,. and (2) outside the rectangle gi'en bN
boundaries, the central differences cannot be used: in these -a < x < a, -h < v < h. periodic conditions are used
,ases. three-point forward (backward) formulae were used and together with von Neumann's method (Mitchell and Griffiths
are ginen in the Appendix (Greenspan 1974). It is important to 1980). leads to the following conditions on It..
note that no side boundary conditions are imposed. Equations B, I B, -
iA3)-iA8) in the Appendix are used to extrapolate the interior - - and - 1) < - 17)
field to the side walls. This forms a Cauchy problem to be B: B: 2
solved. B' - B" I B + B:- I

Finallv. to extrapolate the field components numericalk in f) < - and - , - t3.8)
,he z-direction using the derived vertical gradients. both B,'/: - 2 B, B: 2
Euler's formula and the Adams-Bashforth two-step formula where
were used. These formulae are also given in the Appendix.
Thus. the final numerical forms for the extrapolation of the ,) = I t ) = -- (3.9)
magnetic field for points interior to the domain are gien by h"
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:natnematical iormaiism of this method is presented in , 1I. and We take as the lower bounuar, suriace the plane 0 = ) Then
.ie numencal method and procedures are included in , Ill. In equation (2.9) indicates that knowing the %ector field Blx. t. 0)
I\. rebuits fron A oenchmark test case are gisen together with over this surface is sufficient to determine locally the parameter

an ana.sis of the computational accuracy for this test case. To xlx. y. 0). In this way. we hase ensured that the source surface is
,how the capability of this scheme, the data obtained from a self-consistent noninear force-free field Then with Ax. y, 0)
observation were analyzed by this new technique and com- and B(x. y., 0) specified. equations 2 62.8) determine eB(x. y.
pared with a classical potential field technique iSchmidt 1964). 0) Cz and thus allow the start of an integration upward with
hThih -omparison (Jearly shows that the nonuniform current height z The process can then be repeated. beginning with the

teatures that are present can be identified with this new tech- determination of xx. *. dzi from Bh'. . dzl. again through
nique. Finall\. concluding remarks are presented in , V. equation (2.9). It shovld be noted that equation 12.10). derived

from equations 12.6)-2.9), provides an alternative method to
I. MATHEMATICAL MODEL derive o€x. y. : > 0). In places where B. goes to zero. for

The basic equation describin a force-free magnetic field is example. along the "neutral line" in the photosphere iloci of
given by nulls in the line of sight (B:) component of the photospheric

J X B 0 () i2.1) field). or near the tops of magnetic loops higher in the atmo-
sphere. equation (2.9) cannot be used. In these instances, an

This may be rewritten with the aid of Amperes law lcgs elec- interpolation along the field line such as that given in equation
tromagnetic units). (3.6) is used to determine the value of x. This is based on the

assumption that all the field lines are continuous in the neigh-
4rJ = V x B. 12.2) borhood of a point. an assumption that has a physical and

mathematical basis, since the present formulation does not
include dissipative processes.

V xB = zB. s2.3)
III. NUMERICAL METH-Oi)S

, here J is the electric current density and a in general is differ-

ent for each held line. although it must be constant along a As showv by Grad (Grad and Rubin 1958: Grad 1985), the
gwven neld line. This can be seen by taking the divergence of differential equation for the force-free field problem is a mixed
equation 12.3) to obtain type. having one nontrivial distinct real characteristic as in a

hyperbolic equation. and two imaginary ones as in the case of
B • VX = 0 12.4) an elliptical equation. For the general nonlinear case this leads

hv ' irture of the solenoidal condition to mathematical difficulties both in the specification of bound-
ary conditions and in the nature of the solutions. A number of

V B = 0 . (2.5) astrophysical examples (magnetostatic as well as force-free)
If x = 0. the field is potential. that is. the lowest order have been discussed by Low (1982a) and by Lerche and Low

approximathon for a description of realistic solar magnetc (1982), and they summarize the present status of several classes
appoximtin fr a ecritonf o relistslar magoet of analytical solutions. Recently several attempts have been
ields Since a potential configuration represents the lowest made to devise algorithms for calcuatg nonlinear force-free
srate of energy of a given magnetic boundary condition. it is fields using observational boundary conditions le.g.. Sakurai
definitel, not an appropriate description for magnetic fields in 1981: Pridmore-Brown 1981: Sakurai and Makita 1986. Yang.
!ctie regions that produce flares. If x has the same value Antiochos. ano Sturrock 1986. Zmmann 1987). The tech-
".ouLnout the field domain, the resulting subclass of force-free
iclds i called a "constant-z'" or linear field, since the field nique developed by Pridmore-Brown 1981) requires the

components saisfy a linear differentl equation tNakagawa Lorentz force to be minimized. The method of Zwmgmann
and Raadu 1972) We wil consider the general class of fields 11987) and Yang. Antioch's. and Sturrock (1986) have only
"A, here x is a % ariabie been applied to two-dimensional problems. On the other hand.

themetnerevlopd yiskuaa 198 ariabomintie.o
In component form. equations t2 3) and (2.51 form the basis the method developed by Sakurai 1981) is a combination of

the superposition of a current field on a potential field and aof a scheme ,o extrapolate the force-free tield when the vector

maernetic field onl the boundary surface is known Some of the convergent iterative procedure. Pridmore- Brown's method has

preliminary results were presented by Wi. Chang. aind not been used with observational data. nor has it been tested
against general nonlinear analytical models. However. neither

!-lae.ara 11985). We write the following equations using equa- Sakur'i, nor Pridmore-Brown s method is convenent t
ions1 3f.24). and 1 5N apply to observational data. [he present method is speciticallv

B'1, ,B developed for data utilization. Most recently. Aly (1988) has
B 2.6) investigated some theoretical aspects of the construction of the

nonlinear lorce-tree magnetic field from boundary data. He has
B B. .oncluded tht it Is possible to ontruci ,tich a solution with
7- - i pi oper LL'iiralnt.,. A5 a linai remari,. it hian been known that

some %er' uselul approximations do not become exact in an',"8. 1, J_ known limit. t or example. the %on Karman I sien method for
- , - -2 airloi ill subsonic flow ILiepman ani Puckett 19471. shock

expansion theor, and its extension to aismmetrlc and three-
3i (,.9i. , 9 dmensional flows Ittacs and l'rohstein 959). Spreiter', local

lineanzation in transonic flow ISpreiter 1959). etc I'lis kind of
approximation has been classified as the irrational approx-

, .. { ,-I_- I,2.11 minton b, Van l)vke 11975) The present approximation falls
- ,, '~ K. I into this catecory
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These stability criteria guide us in choosing the proper grid ANALYTICAL COMPUTED

spacings and extrapolation step (h.). In practice. the periodic Y 7 = 0 5 Z = 05

boundary conditions are not used to determine the values on y ,-
the side boundaries, but the linear extrapolation based on inte- . - /

nor points was used. - 7:

IV. COMPUTATIONAL RESULTS 'N ,

In order to demonstrate this algorithm, we have carried out ) .
a numerical calculation, using as a benchmark testing case a / 7

form for the nonlinear force-free field that admits of an analyti- .- " 4 4
cal solution. The form chosen was the analytical solution of 5 5

Low (1982b) that incorporates a distorted magnetic neutral X X
line and a highly sheared magnetic field in the vicinity of the
neutral line. both important elemens in flare-productive active = 1 0 0
regions (Hagyard. West. and Smith 1985: Hagyard. Moore. Y _=_ _ 0_ _

and Emslie 1984). Low's solution is given by the following
equations:

B = -Bn Zo 14.1) 81
r '. .

B 1,,:otx - - t., B(,:tI z - . 4;
B" 'in P.. (4 21. 7 7'

B, .I V+ v: - :.,) Bozo(y + o) 6 5 -6..
B_ rR" o , +in ,. 44.3)

Fico. 2.-Companson of analytical and numerical '.alues for the B. ime of
where sight) component of the magnetic field at two different heights (z = const.l. The

R + n)2  + solid and dashed curves represent positive and negative contours of the B.
R=Y + ( + )21 4 component of the nonlinear force-free magnetic field in the x-.v plane at : = 0.5

r2 + V,)2 . + t.)2 + 4- + :o) 2]  14.5) (in the middle of the :-scalel and at : = I 0 (at the top of the :-scalel. where the
++ " numbers indicate the strength of the magnetic field The numbers represent the

= 0.3 In R (4.6) level of magnetic strength as follows- 3 - 1000 G. 4 - 500 G. 5: -200 G.
6 OG.7.200G.8 500G.9 IO00G

d[(f,(r)1 0.3
dr - r 4.7) shown in Figure 2. they are in good agreement at both levels as

far as the strength of the vertical component of the magnetic
Bo is the magnitude of the magnetic field strength at the origin field is concerned.
I.,, . ,, , , 4 here this origin is chosen to be locatea under the In Table I %e present detailed quantitate comparisons for
source surface. The configuration of thr field lines inside the = 0.5150.000 km. For selected grid points in the x-v plane of
,omain are aeterminea by the position of this origin relative to
the source surface. In the present study, the origin (x,,. , -. :) Is
chosen to beIx, = -'4Lx. Yo = -L zL, = -L.), and R is the 1

normalized form of rIR = r Ro). Z 1 0

Using these formulae, we generated the values of the mag-
netic field on a finite source surface forming the boundary of 4 )
the domain of the calculation. The source surface numerical "'-.
values were used in our numerical algorithm to extrapolate the 0 1 ' .

field above the source surface. Since the analytic solutions gave CB)
the exact solutions for the field above the source surface, corn-
parisons of our results with the analytic computations provid- >
ed a stringent test of the algorithm. Figures 2-4 show the < (Bz)
resulting comparisons between the numerical and analytic _ tsolutions. 1-

10 1- cure 2. oniours ol the Nerticai field ithe line-olf-,wht
ield for areas near tile center of the solar disk, are sihow, n in tile
s-t plane at two heights I: = constant) above the photosphere. 2 3 4
Normalized to the computational site of the square base
reenon at : = 0. the two levels are at I = ) 50 and : = 4): with
11 base length of - I' km. these levels (.orrespond to heights of i i, \craize perentaie error hctvecn i the ,nak .ial and numeri-.,u

50.001) and I00.00) km. respectively. Since these are consider- ,lluti s as a lu nLtion ol the parameter , ihts parameter rcpreseni hoA
able heights up in the solar corona, comparisons between the euh o ihc domaiin in the x ia doin ) In tlici th a ,tnhri , ro• error ,i - i rcnrescnt., ihe iniiihil dornain ,) - I inlhcdt% ihdii ihe tiroi ro .

numerical and anai tical fields at these heights represent criti- inid Lolurnn on id eycat the houndar, ol we donmin are omitied in the error

cal tests of the numerical method. As iudged by the results .inalsst.et,.
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FORCE-FREE MAGNETIC FIELDS

Figure 4 shows the three-dimensional representation of the
magnetic field lines obtained from analytical solution and
numerical code. respectively. Again. by comparison of these
two cases, we note that for the lower field lines fi.e., below
20.000 km) these two cases are almost identical, but the higher
field lines do show some small differences, for example, the
differences between field line L, and L.. These lines originate
near the boundary; hence they are expected to show numerical
differences. However, we are reminded, in general, that there
are two steps that introduce numerical errors: I1) the extrapo-

- -- lation procedures and (2) the graphics procedure. With these
two sources, the differences between analytical and numerical
solutions are as small as shown, which indicates that we are
able to establish a numerical procedure for extrapolation of the

.7 field.
B" Since we have shown that the numerical scheme is an accept-

able one in comparison with an analytical solution, we shall
now apply this scheme for real data analysis. Since observa-
tional errors may introduce spurious numerical res,.ts, this
data set will test the numerical stability to nonideal data. For
this purpose. we have chosen the near disk center (1980 Sep-
tember 151 active region AR 2665 observed by the Marshall
Space Flight Center vector magnetograph for analysis. Figure
5 shows the observed B_ contours and transverse vector fields
(i.e.. B, and B) at the photospheric level which will be used as
the surface information for the numerical extrapolation of nor.-

lk %,._ linear I i.e.. non-constant-a) force-free field lines. Physically this
/ .- means that the intensity of die current density at each foot-

point is different according to the observed value.
Figure 6a shows the three-dimensional configuration of the

field lines of this active region based on this newly developed
nonlinear lorce-free model. and Figure 6c shows the three-
dimensional configuration of the field lines of the same active

Firj. 4 -Three-dimensional representation of the nonlinear forcc-free mag- region found with a potential field model (Schmidt 1964). In

netic field. tal analvtical solution and iOl numerical solution. ',here L, and L, addition, we have shown the top view of these two cases in
especti els represent me held line The same footpoint is ubtaried bs the Figures 6h and 6d. respectively In comparing these two cases.

analytical solution and the numerical solution

33 < 33 grid points, the table gives the analytic and computed
,dues for ail three field components and for the force-free

parameter ;(. From data such as those in Table 1. we have , - ....

calculated the mean square percentage errors in the field com- .. .,
ponents at different heights as a function of the parameter 0. . . .... .
,. hich is the number of rows and columns next to the boundary ' ..
,urfaces in the \-i plane that are omitted from the error
analvsis. In Figure 3 these percentage errors are plotted against . - .-

the parameter 6 for thelevelz = 10. For thecaseof6 = 0. that . f.rr-  ,.
is. if all grid points in the domain are included in the error . r' /
analysis th~e basic quantitative result is very obvious: at all . .

height levels, including the highest. the computed solution AI

agrees with the analvtic solution to better than 5% in all field '
components. and the typical error is only 3" However, the . .
error of the x-,alue will be greater because is computed from . , , . . I, , . '.,_r'f-
-he eradients o, the magnetic field and divided b, B._. Figure S . . .

,,N) demonstrate,. that the erors tend to occur near the . "K'. , .

boundaries. oince all errors at = 10 tend to decrease as the ..
,rid points near the boundary are omitted in the error calcu- -.

Mation. 'ht,, re.sult indicates the obvious result that in computa- . , I
tions using obser~auonal data some care must be exercised in ''. .

analvzing the data near the boundaries Because the exact ikersed B Lontours and traiverse Nector felds ie B ad 1
nature of the held outside the region is not available for use in on 19X, September I tAR 2665 d photiopnere c els ic -. z, 0. were
the computation. the effects on the solution due to this outside 4- 0 1, - I ,X) 6. lx) G 1) ,m (). L 250 Q 1 4i
region could not be accounted for , (l(; H x)U. I - IlXX)(
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3,.'

(d)
Fit, 6 -1a) Numerical extrapolated three-dimensional magnetic field line using present nonlinear force-free magnetic field code basea on the data given in Fig. 5.

hi Same sirUi~ture .ts in tai as ',iewed from thc top it iNumericail extrapolated three-dimensional magnetic held lines using potential magnetuL tield model ISebmidi
1964) based on the data given in Fig, 5 (di Same structure as in ic) as viewed from top

wNe note that thc topology of two magnetic field lines exhibits resentation. For example. let us examine thc field line configu-
,onsiderable differences. No shear feature appeared in the ration for these two cases. In the case of the nonlinear
.otential field representation. which is what is expected force-free field representation as shown in Eteure 6a. the field

because the potential field model is a current-free model. Thus, lines are highly twisted topologically in the penumbral region
there is much less structure exhibited in the potential field as well as in the umbra, where field lines are open. Also. we
representation as compared with the nonlinear force-free rep- observe from the calculation based on the analytical solution
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that every loop has a different shear, which represents a differ- I. In Figure 7 we have plotted the extrapolated field con-
ent current intensity. Now some attention must be given to the tiguration shown in Figure ba projected on the x-- plane. It is
extrapolated field configuration as shown in Figure (a. It is clearly indicated in this figure that the general characteristics of
obviously difficult to comment on the accurac. of this repre- this extrapolate solution exhibit characteristics of a sunspot
sentation because there is no analytical solution or other refer- such as the core. umbrae, and penumbrae (marked by A, B. and
ence which we can use for comparison. However, some C in Fig. 7).
theoretical assessments can be made: 2. The shaded region represents the region of realistic solu-
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tion. Beond this region, the numerical procedure diverges cal algorithm bN setting x = 0 The results are compared in
from a realistic solution, as can be seen by the convergence of Figure 8. In Figure 8 we have shown the front %iew of the held
the field lines [lhis effect could be credited to the averaging lines 0z planei computed by Schmidt's method (Fig. 8a) and
procedure in our numerical calculation (see eq. [3.6]) arid the by the present method (Figs. 8b and 8c on the left-hand side.
range extended beyond our regularization process in addition and the corresponding results of the top %iew ix-Y plane). i.e..
to the finite magnetogram. However, this effect does not Figures 8d-8f, on the nght. From these results, we observed
appear when we run the analytical tests because the analytical that those lines limited to half the height of the computations
,olution hich we hae chosen has regular analtical contin- domain, which corresponds to a 45 cut [i.e.. - tan ' (hh:)],
uous behavior. are almost identical to those given by Schmidt's method. This

3. To assess the region of convergence further. v,e have is indeed consistent with the results we haze shown in Figure 7
employed the present numerical method to compute the poten- in describing the region of convergence.
tial field i e.. )c = 0) configuration using the very same data To examine the effects of the boundaries, we use the same
presented in Figure 5 in comparison with Schmidt's method ooserved field but "move" the sunspot toward the boundary
(1964). The procedure for carrying out this comparison is to and extrapolate the nonlinear force-free held to different
input the potential field at the : = 0 level from the observed heights as shown in Figure 9 From these results, we note that
data of 1980 September 15 (AR 2665) into the present numeri-
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,he basic features ot the sunspot are identical for both cases. ergence. In addition, a numerical example based on the obser-
However. at higher heights. significant differences on the ;ational data was also presented to test the capability of this
neutral line., are seen. This is consistent with our previous numerical nonlinear force-free model As has been pointed out
,.omments. the accuracy of this procedure deteriorates when by a number of authors (Grad 1973. Kress 1977. 1978). the
the solution is close to a boundary. It is important to note that complete mathematical characterization of the nonlinear force-
since B • Vx = 0. a twisted field leads to localized currents free problem has not yet been achieved Accordingly, we do not
which %ill remain localized as seen in Figure 0a. claim to have solved the nonlinear force-free problem, we have

\s a fnal assessment of this newly developed method. we merely presented a numerical algorithm that can be used for
.%ould like to show that this method is indeed stable with extrapolation of the force-free solution to within a certain
respect to the ranoom noise. In order to achieve this point, we accuracy. Nevertheless. because of the practical importance of
have introducec a random perturbation in the data generated force-free fields in understanding the physics of the Sun. there
by Low's analytical solution at the surface (eqs. [4.1]-[4 31). is strong motivation for devising a numerical approach that
The random perturbations were introduced at an amplitude of will serve in the interim until a satisfactory mathematical
10. for the transverse field (i.e.. B, and B,) and 1",, for the understanding is achieved. Therefore. it would be wise to note
line-oi-sight field (i.e.. B.). These results are shown in Figure 10 some unresolved mathematical questions when applying this
Figure 1a shows the results without introducing the random numerical procedure for data analysis. 11) The accuracy dete-
perturbation. Figure 10b shows the results with random per- riorates when the solution is close to tt.L boundary. (2) The
turbation with a one-step smoothing process. and the results uniqueness of the solution has yet to be established (however.
with random perturbation together with a two-step smoothing the preservation of the solution via Narious boundary values
process are presented in Figure 10c. By comparison of these has been demonstrated. see Fig. 9).
results, we clearly noted that the results with two-step smooth- As of now. we have achieved this initial goal. the next step is
ng are converging to the true solution. Thus we ma. claim to apply, this algorithm to a wide variet. of actual observations

that the present method is a stable one with ranoom noise of vector magnetic fields to test the numerical code under
perturbation. various conditions. e.g., for the magnetic field in more complex

regions, and to explcre the region of convergence of the
\ CONCLUDING REMARKS numerical extrapolation. Also. the effect of noise in the obser-

In this paper we have presented numerical solutions for non- %ational data should be investigated.
linear force-Iree magnetic fields above a source surface. lhese
numerical solutions are based on a numerical scheme which
enables us to obtain nonlinear force-free solutions by extrapo- The work done by S. T. W. and M T S. was partially
lation from a given surface. This newly developed algorithm supported by AFSOR-88-0013 S. T. W.. M. T. S.. and H. M. C.
was tested by using an analytical solution to the nonlinear were partially supported by NASA grant NAGW-9. The work
force-free field equations. the test showed that. vith the present done by M. J. H. and G. A. G. was in part supported by NASA
numerical scheme, nonlinear force-free magne.ic fields can be through the Solar Physics Branch of the Space Physics Divi-
cxtrapolated to an accuracy of better than 5' in comparison sion We also thank S. T. Suess for reading the manuscript and
wkith the anaiytical case in a defined region. i.e region of con- giving %aiuable comments.

APPENDIX

I INITF-DIFFERENCE REPRESENTATION O1F THE REQUIRED TIR\S IN THE G(OVFRNING EQUATIONS
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For points I

= (ztm ('j-~mn+(B)~ 2mn+ O(h-). (A5)

For points m in~nax,

LaB.: (),m, 4(B,)im,, - I + (B),m~ +0(112)
0.11/i.m.n 2h)(0

Euler's formula is written

(BBimn.,. - hBz(thn + OWh): (A7)

the Adams-Bashforth two-step formula is

+Bt Im.i - (B),... -h (L3B) h= - (LB) + O(h ). (A8)
2 - .m.nt 2' ..z
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ABSTRACT

In this paper we present a comparison between two numerical
methods for the extrapolation of nonlinear force-free magnetic
fields, viz. (i) the Iterative Method (IM) and (ii) the
Progressive Extension Method (PEM). The advantages and
disadvantages of these two methods are summarized and the
accuracy and numerical instability are discussed. On the basis
of this investigation, we claim that the two mefhods do resemble
each other qualitatively.

I. INTRODUCTION

It is wellknown that the magnetic fields play a dominant
role in all physical features which appear in the solar
atmosphere, for example, the observed filamentary structures in
the chromosphere seen in H, (Martin, 1980), and coronal loops
seen inUV (Cneng, etal. 1982) anJ X-rays (Antonuczi et al. :9Z2*
de Jager et al. 1983). All these structures in the solar
atmosphere are generally considered to be aligned along the
magnetic field (Zirin, 1971; Poletto, et al., 1975).
Physically, these structures can be interpreted as plasma
confined by the magnetic field. Hence, a detailed and
quantitative analysis of these structures require a
quantitative knowledge of the magnetic field in the solar
atmosphere. Presently, measurements of magnetic fields are
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confined to the photospheric level; therefore, in higher levels
(i.e. chromosphere and corona) the magnetic field can only be
obtained through numerical extrapolation using the measured
photospheric magnetic field as the source surface, as
demonstrated in the early work of Schmidt (1964), Altschuler and
Newkirk (1969), Nakagawa and Raadu (1972). All these early
extrapolation methods are restricted to the linear
approximation, which physically represents current-free field
(potential field) or constant current-to-magnetic field ratio
(linear force free field). It has been shown that these
representations are far from ealistic in describing the
observed features in the solar atmosphere (Schmahl et al.,
1982).

In order to improve our understanding of the physical
structures of the solar atmosphere it is necessary to have
quantitative knowledge of the magnetic field. Therefore, a
number of extrap-.ation methods is developed to meet the demands
The mathematical model using a force free configuration on the
basis for the extrapolation of photospheric vector magnetograms
to obtain the coronal field has been given by Aly (1989) and Gary
(1990). In particular, Gary (1990) presented an excullent
summary and assessment on the present available extrapolation
methods from a theoretical point of view.' ,ti this paper, .
comparison between the progressive extensio., r.ethod (PEM) and
iterative method (IM) is pLesented. The i:ationale for choosing
these two extrapolation techniques for :omparison is that they
are based on observed photospheric level fields and have
practical applications. A brief description of the theoretical
background of these two techniques is presented in Section 2,
Numerical results of direct comparison are included in Section
3. The discussion of advantages and disadvantages of these two
techniques and their possible physical consequences are
presented in section 4.

II. THEORY AND TECHNIQUES

On the assumption of magnetohydrostatic equilibrium in the
solar atmosphere, the mathematical model describing such an
equilibrium state may be written as

-7p + J x B - P; = 0 , (1)

where p is the hydrostatic pressure and will be represented by
the equation of state,

p = pRT , (2)

with p and T being the mass density and temperature respectively.
The other symbols have their usual meanings, B is the magnetic
field and J, the current density, is related to B by
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j= 7x . (3)

Finally, g is the gravitational acceleration. Physically,
there are three different orders of approximation to determine
the magnetic field configuration. The first and second order
approximations are the current free (potential) and force-free
magnetic field, respectively. Within these orders of
approximation the magnetic force vanishes, and the pressure
force is balanced by the gravitational force which leads to the
hydrostatic equilibrium in the solar atmosphere. Under these
circumstances, the mathematical model for the magnetic field
configuration can be represented by

7 x B = , (4)

This expression possesses three different physical meanings,
which are: (i) a = 0, corresponds to the current free case in
which the magnetic field is potential, (ii) a = constant,
corresponds to the linear force-free magnetic field which
implies a constant current-to-magnetic field ratio in a region
and (iii) a=a(r), corresponds to the norlinear force-free field
which implies a non-constant current-to-magnetic field ratio in
a region.

Finally, the third order of appoximation is the
magnttohydr static equilibrium in the solar at Vrhere which is
given by Eq. 1l). If there is information on B and p on the
source surface, it is possible to extrapolate B and p upward.
Since there only are measurements of the magnetic field on the
source surface (photosphere), it is not possible to extrapolate
magnetohydrostatic equilibrium field-configurations at the
present time.

In the meantime, we shall focus our attention on the
nonlinear force-free field configuration. For the purpose of
this paper, we have selected two techniques for this
investigation. These two techniques are progressive extension
method (PEM) (Wu et al., 1985, 1990) and iterative method (IM)
(Sakurai, 1981). A brief description of these two methods is
presented below:

Progressive Extension Method (PEM)

The progressive extension method is formulated as an
initial-value problem (i.e., Cauchy problem) using a finite
difference scheme which is similar to a Taylor expansion. A
detailed description of this method is given by Wu et al. (1990).
They have demonstrated the usefulness of this method, and the
numerical algorithm has been verified by extrapolation of an
analytical solution (Low, 1982).

Afem. S-A.11.,1990
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Iterative Method (IM)

A number of authors (see references in Gary, 1990) have
utilized an iterative method originated by Grad and Rubin (1958)
to extrapolate the nonlinear force-free magnetic field from
boundary data. For convenience, we simply choose the iterative
method developed by Sakurai (1981) in this study. His' method is
based the integral equation representation of Eq. (1), and the
discretization is made by the technique of finite element
method. A detailed description of this technique was given by
Sakurai (1981), and we shall not repeat it here.

III. NUMERICAL RESULTS

In order to make comparison between the PEM (Progressive
Extension Method) ofWu et al. (1985, 1990) and the IM (Iterative
Method) of Sakurai (1981), we have chosen the vectoral magnetic
field observed at Okayama Astrophysical Observatory on May 26,
1985 (Sakurai and Makita, 1986) as the boundary for
extrapolation using these two methods. The observed magnetic
field vector is shown in Figure 1.

MC526CDATE 83/5t26 TIME(JST) 10 2 13 .11 13 5
OBSERVED FIELD VECTOR

0

( 0

o

.. ,b "- ,..

Figure 1. Magnetic field vector observed at Okayama
Astrophysical Observatory on May 26, 1983. Solid
and dotted contours show positive and negative
longitudinal f:.elds, respectlvely, with levels = !0,
20, 50, 100, 200, 500 G. Arrows indicate the
transverse vector.
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Using these observational data as a source surface, we
obtained the nonlinear force-free field configuration by using
the aoove mentioned two methods as shown in Figure 2, where
Figure 2a is obtained by using the IM and Figure 2b by using PEM.
In addition we have extrapolated the potential field
configuration using PEM in comparison with the potential field
liven by Sakurai and Makita (19861, see Fiqure 3. From these
resui's, observe that the aeduce, naanetic field conriaurat-ons
albeit not identical, in fact, qualitatively resemble each other
to a large extent.

I'- x'= - I /-- " -.

(a) (b)

Figure 2. Nonlinear force-free field lines computed by (a)
Iterative Method (IM) and (b) by Progressive
Extension Method (PEM) using the data shown in Figure
i.

-)b)

1..

- I q ' ..

(a) tb__ _ _ _ _ _

Figure 3. (a) Potential field lines computed by IM and (b)
potential field lines computed by PEM using theobservation given in Figure 1.
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IV. DISCUSSION

Before we analyze the causes of these differences seen in
the two extrapolations we review the fundamental differences
between the two methods. These differences can be summarized as
follows:

.-ie Iterataive Hetnod (24) spe.t.rias tne value of a on a
portion of the boundary plane (e.g. on a positive field
region) and cannot assign the value of a on the whole
boundary plane, since that would introduce an
inconsistency in the extrapolation process. The
values of a in the whole boundary plane are determined
by the observed data for PEM. In this fashion, there
is an electric current only along the particular field
line in the IM extrapolation, while the electric
current is distributed in the whole domain of
calculation for the PEM extrapolation.

2. The IM type of extraplation is convergent only for
small values of t. Physically, this implies that the
electric current in the region of interest must be
small. On the other hand, the PFM type of
extrapolation does not have this limitation.
However, the accuracy of the computea m-v.i=e
deteriorates at the points near the neutral line (i.e.
B2  0). This may cause a misrepresentation of the
magnetic field configuration. The grid size of the
extrapolation is controlled by the numerical stability
criteria as given by Wu et al. (1990).

3. The fact that the value of a is assigned at one of the
two foot points of a particular field line in the IM
while the values or a are determined cn the entire
boundary surface in the PEM makes it difficult to match
and compare the field lines for these two different
methods.

On the basis of these differences of extrapolation
procedures, we may understand why the magnetic field
configurations obtained from the same data with these two
methods are not identical. For example, Figure 2, shows some
differences in magnetic feld-line configurations, but the
lines connecting different regions of polarities are quite
similar. Note that for two regions of opposite polarities near
the right center, the PEM extrapolation doesn't show any
connection by field lines, while the !M type extrapolation does.
However this is due simply to the fact that the field lines in
this region are very low and short, and cannot be discerned in
this drawing. Plots of the front view of Figure 2b, clearly
indicate that the regions are connected by field lines (marked by
A) as shown in Figure 4.

Merm. SA.It, 1990

264



A

Figure 4. The front view of the nonlinear force-free field
computed by PEM using the observtion given in Figure
I. It should be noted that the field lines near the
top are not accurate due to numerical procedure as
discussed by Wu et al. (1990).

We further notice that the configuration of the field linesobtained by IM extrapolation is very similar to a potential fieldline configuration. This is because the IM requires that thevalue of a be small (i.e. slightly deviating from potential).
On the other hand, the PEM extrapolation does not have thislimitation. It is understood that the degree of deviation from
a potential field depends on the value of a, that is the strength
of the local electric current. Therefore, the configuration of
magnetic field lines is affected.

In summary, we conclude:
(i) Both methods do produce qualitatively similar results.

(ii) The accuracy of PEM has been verified by an analytical
solution (Wu et al. 1990); verification of IM is still
needed.

(iii) There are limitations on the value of a for IM, but not
for PEM.

(iv) The accuracy for PEM deteriorates when the height of
extrapolation exceeds one third the horizontal length,
because of the propagation of the accummulated
numerical errors at each level (Wu et al. 1990).
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CONCLUDING REMARKS

Under this grant, significant contributions are made for understanding

the photosphere-corona-interplanetary couplings. The highlights of these

findings can be summarized into three areas as follows:

(i) Shear induced instability as a mechanism for the occurrance of

Coronal Mass Ejections (CMEs).

(ii) A three-dimensional, time-dependent magnetohydrodynamic (MHD) model

of extended corona.

(iii) Progressive-Extension-Method for the extrapolation of non-linear

force-free magnetic field.

The basis of these results have laid the groundwork for further

development of the prediction science and technologies for forecasting solar

flares and geomagentic storms. For example, the shear induced instability

leads to CMEs which could be tested by observations in hwihc a critical value

of "shear" could be obtained. Then, this could be used as one of the

parameters for the prediction of CMEs. The current understanidng is, the CME

has great significant correlation with the occurrance of geomagnetic storms.

In this scenario, we would recommend the following specific subjects for

further investigation:

1. Numerical Simulation of the Formation and Evolution of
the Active Region.

To perform such a study, we need to employ the PEm to extraplate the

magnetic field configuration from the observations. Using this realistic

magnetic field configuration as the initial condition for our three-

dimensional MHD model, compute the evolution of the physical plasma parametrrs

and fields to determine the critical values of these physical parameters for
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occurance of solar activities.

2. Numerical Accuracy Tests for MHD Models

In order to learn the realiability of these numerical simulations, these

MHD models need to be tested carefully in which limitations on these models

should be established.

3. Real-Time Tests

If the results in (2) are positive, we should document these models to

transfer them to the proper Air Force Laboratory for real-time tests. Thus, a

prediction technology could be developed for the protection of satellite

systems and others.
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